Термическая обработка металлов и сплавов

Содержание скрыть

Термическую обработку применяют на различных стадиях производства деталей машин и металлоизделий. В одних случаях она может быть промежуточной операцией, служащей для улучшения обрабатываемости сплавов давлением, резанием, в других – является окончательной операцией, обеспечивающей необходимый комплекс показателей механических, физических и эксплуатационных свойств изделий или полуфабрикатов. Полуфабрикаты подвергают термической обработке для улучшения структуры, снижения твердости (улучшения обрабатываемости), а детали – для придания им определенных, требуемых свойств (твердости, износостойкости, прочности и других).

В результате термической обработки свойства сплавов могут быть изменены в широких пределах. Возможность значительного повышения механических свойств после термической обработки по сравнению с исходным состоянием позволяет увеличить допускаемые напряжения, уменьшить размеры и массу машин и механизмов, повысить надежность и срок службы изделий. Улучшение свойств в результате термической обработки позволяет применять сплавы более простых составов, а поэтому более дешевые. Сплавы приобретают также некоторые новые свойства, в связи с чем расширяется область их применения.

Назначение и виды термической обработки

Термической (тепловой) обработкой называются процессы, сущность которых заключается в нагреве и охлаждении изделий по определенным режимам, в результате чего происходят изменения структуры, фазового состава, механических и физических свойств материала, без изменения химического состава.

Назначение термической обработки металлов – получение требуемой твердости, улучшение прочностных характеристик металлов и сплавов. Термическая обработка подразделяется на термическую, термомеханическую и химико-термическую. Термическая обработка – только термическое воздействие, термомеханическая – сочетание термического воздействия и пластической деформации, химико-термическая – сочетание термического и химического воздействия. Термическая обработка, в зависимости от структурного состояния, получаемого в результате ее применения, подразделяется на отжиг (первого и второго рода), закалку и отпуск.

Отжиг

Отжиг – термическая обработка заключающаяся в нагреве металла до определенных температур, выдержка и последующего очень медленного охлаждения вместе с печью. Применяют для улучшения обработки металлов резанием, снижения твердости, получения зернистой структуры, а также для снятия напряжений, устраняет частично (или полностью) всякого рода неоднородности, которые были внесены в металл при предшествующих операциях (механическая обработка, обработка давлением, литье, сварка), улучшает структуру стали.

6 стр., 2522 слов

Термическая обработка стали и чугуна

... отпуском, ведущая к существенному улучшению общего комплекса механических свойств, называется улучшением и является основным видом термической обработки конструкционных сталей. 3. Технология термической обработки стали 3.1 Отжиг и нормализация Отжиг - термическая обработка, при которой сталь нагревается до определенной температуры, ...

Отжиг первого рода, Гомогенизационный, Рекристаллизационный, Отжиг второго рода, Полный отжиг, Неполный отжиг, Диффузионный отжиг, Изотермический отжиг, Сфероидизирующий отжиг (на зернистый перлит, Светлый отжиг, Нормализация

Закалка

Закалка – это нагрев до оптимальной температуры, выдержка и последующее быстрое охлаждение с целью получения неравновесной структуры.

В результате закалки повышается прочность и твердость и понжается пластичность стали. Основные параметры при закалке – температура нагрева и скорость охлаждения. Критической скоростью закалки называется скорость охлаждения, обеспечивающая получение структуры – мартенсит или мартенсит и остаточный аустенит.

В зависимости от формы детали, марки стали и требуемого комплекса свойств применяют различные способы закалки.

Закалка в одном охладителе, Закалка в двух средах (прерывистая закалка), Ступенчатая закалка, Изотермическая закалка, Закалка с самоотпуском

Отпуск

Отпуск стали является завершающей операцией термической обработки, формирующей структуру, а следовательно, и свойства стали. Отпуск заключается в нагреве стали до различных температур (в зависимости от вида отпуска, но всегда ниже критической точки), выдержке при этой температуре и охлаждении с разными скоростями. Назначение отпуска – снять внутренние напряжения, возникающие в процессе закалки, и получить необходимую структуру.

В зависимости от температуры нагрева закаленной детали различают три вида отпуска: высокий, средний и низкий.

Высокий отпуск, Средний отпуск, Низкий отпуск

Контроль отпуска осуществляется по цветам побежалости, появляющимся на поверхности детали.

Старение

Старение –это процесс изменения свойств сплавов без заметного изменения микроструктуры. Известны два вида старения: термическое и деформационное.

Термическое старение

естественным.

искусственным.

Деформационное (механическое) старение

Обработка холодом

Новый вид термической обработки, для повышения твердости стали путем перевода остаточного аустенита закаленной стали в мартенсит. Это выполняется при охлаждении стали до температуры нижней мартенситной точки.

Методы поверхностного упрочнения

Поверхностной закалкой

Различают следующие виды: индукционная закалка; закалка в электролите, закалка при нагреве токами высокой частоты(ТВЧ), закалка с газопламенным нагревом.

Индукционная закалка

В зависимости от способа нагрева индукционная закалка подразделяется на три вида:

  • одновременный нагрев и закалка всей поверхности (используется для мелких деталей);
  • последовательный нагрев и закалка отдельных участков (используется для коленчатых валов и подобных им деталей);
  • непрерывно-последовательный нагрев и закалка перемещением (используется для длинных деталей).
    4 стр., 1777 слов

    Термическая обработка металлов

    ... ее применения, подразделяется на отжиг (первого и второго рода), закалку и отпуск. 2. Отжиг Отжиг - термическая обработка заключающаяся в нагреве металла до определенных температур, ... производится последующий отпуск. 4. Отпуск Отпуск стали является завершающей операцией термической обработки, формирующей структуру, а следовательно, и свойства стали. Отпуск заключается в нагреве стали до различных ...

Газопламенная закалка., Закалка в электролите., Термомеханическая обработка

Термомеханическая обработка (Т.М.О.) – новый метод упрочнения металлов и сплавов при сохранении достаточной пластичности, совмещающий пластическую деформацию и упрочняющую термическую обработку (закалку и отпуск).

Различают три основных способа термомеханической обработки.

Низкотемпературная термомеханическая обработка (Н.Т.М.О), Высокотемпературная термомеханическая обработка, Предварительная термомеханическая обработка (П.Т.М.О), Назначение и виды химико-термической обработки

Химико-термической обработкой называют процесс, представляющий собой сочетание термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали.

Цель химико-термической обработки: повышение поверхностной твердости, износостойкости, предела выносливости, коррозионной стойкости, жаростойкости (окалиностойкости), кислотоустойчивости.

Наибольшее применение в промышленности получили следующие виды химико-термической обработки: цементация; нитроцементация; азотирование; цианирование; диффузионная металлизация.

Цементация

В зависимости от применяемого карбюризатора цементация подразделяется на три вида: цементация твердым карбюризатором; газовая цементация (метан, пропан, природный газ).

Газовая цементация

цементации в твердом карбюризаторе

Цементации любым из рассмотренных выше способов подвергаются детали из углеродистой и легированной стали с содержанием углерода не более 0,2%. Цементация легированных сталей, содержащих карбидообразующие элементы Cr, W, V, дает особо хорошие результаты: у них, кроме повышения поверхностной твердости и износостойкости, увеличивается также предел усталости.

Азотирование

Цианирование

В зависимости от используемой среды различают цианирование: в твердых средах; в жидких средах; в газовых средах.

В зависимости от температуры нагрева цианирование подразделяется на низкотемпературное и высокотемпературное.

Цианирование в жидких средах, Цианирование в газовых средах (нитроцементация, Диффузионное насыщение металлами и металлоидами

Существуют и применяются в промышленности способы насыщения поверхности деталей различными металлами (алюминием, хромом и др.) и металлоидами (кремнием, бором и др.) Назначение такого насыщения – повышение окалиностойкости, коррозионностойкости, кислотостойкости, твердости и износостойкости деталей. В результате поверхностный слой приобретает особые свойства, что позволяет экономить легирующие элементы.

Алитирование

Алитирование проводят в порошкообразных смесях, в ваннах с расплавленным алюминием, в газовой среде и распыливанием жидкого алюминия.

Хромирование

Силицирование

Борирование

Сульфидирование

Сульфоцианирование

Термическая обработка чугуна

Термическую обработку чугунов проводят с целью снятия внутренних напряжений, возникающих при литье и вызывающих с течением времени изменения размеров и формы отливки, снижения твердости и улучшения обрабатываемости резанием, повышения механических свойств. Чугун подвергают отжигу, нормализации, закалке и отпуску, а также некоторым видам химико-термической обработки (азотированию, алитированию, хромированию).

24 стр., 11616 слов

Термическая и химико-термическая обработка сплавов

... 2.ТЕРМИЧЕСКАЯ ОБРАБОТКА СПЛАВОВ Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория термической обработки металлов. Под термической обработкой ... химико-термической обработки. Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение других свойств. Закалка ...

Отжиг для снятия внутренних напряжений

Смягчающий отжиг (отжиг графитизирующий низкотемпературный

Отжиг графитизирующий

Нормализацию

Закалке

объемной непрерывной закалке

изотермической закалке

Поверхностная закалка

Старение

Естественное старении, Искусственное старение

Химико-термическая обработка чугуна

Для повышения поверхностной твердости и износостойкости серые чугуны подвергают азотированию. Чаще азотируют серые перлитные чугуны, легированные хромом, молибденом, алюминием. Температура азотирования 550 – 580ºС, время выдержки 30 – 70 часов. Кроме азотирования, повышения поверхностной твердости и износостойкости легированного серого перлитного чугуна можно достигнуть газовым и жидкостным цианированием при температуре 570ºС. Для повышения жаростойкости чугунные отливки можно подвергать алитированию, а для получения высокой коррозионной стойкости в кислотах – силицированию.

Термическая обработка сплавов цветных металлов

Алюминиевые сплавы

отжига

Гомогенизацию, Рекристаллизационный отжиг, Отжиг термически упрочненных сплавов

закалки

Деформируемые алюминиевые сплавы

В закаленном состоянии дуралюмины пластичны и легко деформируются. После закалки и естественного или искусственного старения прочность дуралюмина резко повышается.

Литейные алюминиевые сплавы

Для литейных алюминиевых сплавов используют различные виды термической обработки в зависимости от химического состава. Для упрочнения литейные алюминиевые сплавы подвергают закалке с получением пересыщенного твердого раствора и искусственному старению, а также только закалке без старения с получением в закаленном состоянии устойчивого твердого раствора.

Магниевые сплавы

гомогенизации

Магниевые сплавы подвергают закалке , или закалке и искусственному старению . При температуре 20С в закаленных магниевых сплавах никаких изменений не происходит, то есть они не подвержены естественному старению.

Медь и медные сплавы, Термическая обработка меди, Термическая обработка латуней, Термическая обработка бронз, Алюминиевые бронзы, Бериллиевую бронзу, Титановые сплавы

Титановые сплавы подвергают рекристаллизационному отжигу и отжигу с фазовой перекристаллизацией, атак же упрочнению термической обработкой – закалкой и старением. Для повышения износостойкости и задиростойкости титановые сплавы подвергают азотированию, цементации или окислению.

Рекристаллизационный отжиг, Отжиг с фазовой перекристаллизацией

изотермическом отжиге

двойном отжиге

Из всех видов химико-термической обработки титановых сплавов наибольшее распространение получило азотирование, осуществляемое в среде азота или в смеси азота и аргона при температурах 850 – 950 С в течении 10 – 50 часов. Детали из титановых сплавов после азотирования обладают хорошими антифрикционными свойствами.

11 стр., 5342 слов

Титановые сплавы

... сплавов – способность упрочняться термической обработкой (закалкой и старением), что позволяет получить существенный выигрыш в прочности и жаропрочности. Особенности титановых сплавов. Одним из важных преимуществ титановых сплавов ... защищает металл от проникновения водорода. В случае наводороживания титановых изделий при неправильном травлении водород можно удалить из металла вакуумным отжигом. При ...

Заключение

Термическая обработка является одной из основных, наиболее важных операций общего технологического цикла обработки, от правильного выполнения которой зависит качество (механические и физико-химические свойства) изготовляемых деталей машин и механизмов, инструмента и другой продукции. Разработаны и рационализированы технологические процессы термической обработки серых и белых чугунов, сплавов цветных металлов

Перспективным направлением совершенствования технологии термической обработки является установка агрегатов для термической обработки в механических цехах, создание автоматических линий с включением в них процессов термической обработки, а также и разработка методов, обеспечивающих повышение прочностных свойств деталей, их надежности и долговечности.

Литература

[Электронный ресурс]//URL: https://drprom.ru/kursovaya/na-temu-obrabotka-metalla/

1. Б.В. Захаров. В.Н. Берсенева «Прогрессивные технологические процессы и оборудование при термической обработке металлов» М. «Высшая школа» 1988 г.

2. В.М. Зуев «Термическая обработка металлов» М. Высшая школа 1986 г.

3. Б.А. Кузьмин «Технология металлов и конструкционные материалы» М. «Машиностроение» 1981 г.

4. В.М. Никифоров «Технология металлов и конструкционные материалы» М. «Высшая школа» 1968 г.

5. А.И. Самохоцкий Н.Г. Парфеновская «Технология термической обработки металлов» М. Машиностроение 1976 г.