Расчет реактора установки каталитического крекинга

Увеличение объема производства нефтепродуктов, расширение их ассортимента и улучшение качества — основные задачи, поставленные перед нефтеперерабатывающей промышленностью в настоящее время. Решение этих задач в условиях, когда непрерывно возрастает доля переработки сернистых и высокосернистых, а за последние годы и высоко парафинистых нефтей, потребовало изменения технологии переработки нефти. Большое значение приобрели вторичные и, особенно, каталитические процессы. Производство топлив, отвечающих современным требованиям, невозможно без применения таких процессов, как каталитический крекинг, каталитический риформинг, гидроочистка, алкилирование и изомеризация, а в некоторых случаях — гидрокрекинг.

Крекинг (расщепление, разрушение) нефтепродуктов заключается в расщеплении длинных молекул тяжелых углеводородов, входящих в высококипящие фракции, на более короткие молекулы легких, низкокипящих продуктов. Главным фактором, вызывающим разрушение молекул углеводородов, является температура. Необходимая температура крекинга зависит от длины и строения молекул (расщепление длинных молекул, как правило, происходит при более низкой температуре).

Скорость и полнота крекинга определяются также выдержкой веществ. Чем выше температура выдержки и больше ее продолжительность, тем полнее идет процесс и выше выход продуктов крекинга.

1. Теоретические основы процесса.

1.1.Назначение процесса.

Процесс каталитического крекинга является одним из наиболее распространенных крупнотоннажных процессов углубленной переработки нефти и в значительной мере определяет технико-экономические показатели современных и перспективных НПЗ топливного профиля.

Основное целевое назначение каталитического крекинга – производство с максимально высоким выходом (до 50% и более) высокооктанового бензина и ценных сжиженных газов – сырья для последующих производств высокооктановых компонентов бензинов изомерного строения: алкилата и метил-трет-бутилового эфира, а также сырья для нефтехимических производств. Получающийся в процессе легкий газойль используется обычно как компонент дизельного топлива, а тяжелый газойль с высоким содержанием полициклических ароматических углеводородов – как сырье для производства технического углерода или высококачественного электродного кокса (например, игольчатого).

Процессы каталитического крекинга получили наибольшее развитие в США, где удельный вес их в 1999г. составил 34,2% от первичной переработки нефти, причем на некоторых НПЗ этот показатель достигает свыше 50%. Доля этого процесса на НПЗ других развитых капиталистических стран составляет 10-15%.

19 стр., 9017 слов

Каталитические процессы в нефтепереработке

... имеет место в каталитических реакциях крекинга, изомеризации, циклизации, алкелирования, деалкилирования, полимеризации углеводородов, дегидратации спиртов, гидратации алкенов, гидролиза и многих других химических и нефтехимических процессах. К катализаторам ионных реакций относят жидкие ...

Еще в 1919-1920-х гг. академиком Н.Д.Зелинским была предложена идея по осуществлению низкотемпературного каталитического крекинга (~200°С) нефтяного сырья на хлориде алюминия. На основе этих работ была создана и испытана опытная установка по получению бензина. Однако в силу существенных недостатков хлорида алюминия как катализатора (сильная коррозия аппаратуры, большой расход катализатора вследствие образования комплексных соединений с углеводородами, периодичность процесса и др.) эта идея не нашла промышленного внедрения.

Первая промышленная установка по каталитическому крекингу керосино-газойлевых фракций, которая была пущена в США в 1936г., представляла собой периодически регенерируемый процесс со стационарным слоем катализатора из природной глины. В 1940г. Природная глина была заменена на более активный синтетический гранулированный алюмосиликатный катализатор (установки Гудри).

В 1942г. Промышленный процесс каталитического крекинга переводят на непрерывную схему с применением шарикового катализатора, циркулирующего между реактором и регенератором. В последующие годы возникли и нашли широкое промышленное внедрение более совершенные установки каталитического крекинга с кипящим слоем микросферического катализатора.

Решающее значение для дальнейшего усовершенствования и интенсификации установок каталитического крекинга сыграли разработка в 1962г. и промышленное внедрение цеолитсодержащих алюмосиликатных катализаторов. Более высокие активность, селективность и термостабильность которых позволили существенно увеличить выход бензина, а также разработать и внедрить (1971г.) высокоинтенсивные технологии каталитического крекинга с прямоточным реактором – с восходящим потоком микросферического катализатора в так называемом лифт – реакторе.

1.2. Характеристика исходного сырья.

В настоящее время сырьем для установок каталитического крекинга чаще всего являются фракции, а в некоторых случаях и остатки от перегонки или переработки нефти, выкипающие при температурах выше 360°С. По химическому составу они представляют собой смесь алканов с прямой (налканы) и разветвленной (изоалканы) углеродной цепью, циклоалканов, аренов и углеводородов гибридного строения различной молярной массы. В достаточно большом количестве в сырье присутствуют гетероатомные соединения, которые главным образом входят в состав смолистоасфальтеновых веществ.

Различают широкие и узкие вакуумные фракции (дистилляты или погоны), получаемые при перегонке в вакууме:

При каталитическом крекинге в качестве сырья обычно используют широкие вакуумные фракции 350-500°С, 360-570°С, причем как прямогонные, так и подвергнутые предварительной гидрообработке (термическая обработка в присутствии катализаторов и водорода, например, процессы гидроочистки или легкого гидрокрекинга).

Необходимость расширения сырьевой базы процесса обусловила в последние годы применение в качестве компонентов его сырья утяжеленных нефтяных фракций с концом кипения 540-580оС и остатков, например, мазута.

Компонентный состав сырья. В условиях Мозырского НПЗ сырье комплекса MSCC может состоять из одного или двух компонентов, т.е. установка работает по одному или другому варианту. Основным компонентом является гидроочищенный вакуумный газойль (ГВГО), поступающий с установки гидроконверсии. При необходимости добавляется второй компонент – мазут, получаемый при перегонке смеси белорусских нефтей в секции 100 установки ЛК-6У №1.

Остаток атмосферной перегонки белорусских нефтей является предпочтительным и более качественным компонентом сырья по сравнению с мазутом западносибирских нефтей, который не может быть использован для этой цели, т.к. имеет высокое содержание коксообразующих веществ, сернистых соединений и металлов, что снижает выход бензина, увеличивает выход кокса и количество выбросов оксидов серы с дымовыми газами регенерации.

В связи с использованием в процессе MSCC в качестве одного из компонентов сырья мазута, целесообразно привести классификацию фирм UOP и Kellog применимости мазутов для каталитической переработки

(табл. 1).

Таблица 1

Классификация мазутов в качестве сырья каталитического крекинга

Тип

мазута

Плотность,

кг/м

Содержание

металлов,

мг/кг

Коксуемость по Конрадсо ну, %

Переработка

Фирма UOP

I

менее 934

менее 15

менее 4

относительно легко

II

934-966

15-80

4-10

трудно

II

выше 966

более 80

более 10

подготовка сырья

Фирма Kellog

I

до 10

до 5

относительно легко

II

10-30

5-10

относительно легко

III

30-150

10-20

требуется гидроочистка

IV

более 150

более 20

требуется деасфальтизация с последующей доочисткой

Содержание мазута белорусских нефтей в сырьевой смеси при работе по второму варианту не должно превышать 40% мас., поскольку при увеличении его количества резко снижается активность и стабильность катализатора, выход бензина и возрастает выход кокса. Для приготовления сырьевой смеси постоянного качества на установке MSCC имеется специальный блок смешения (компаундирования).

Основные характеристики сырья. Одной из важных характеристик сырья является его фракционный состав, т.к. от него прямо или косвенно зависят все остальные свойства – плотность, групповой химический состав, содержание серы, коксуемость, полнота испарения сырья в реакторе.

Основной компонент сырья – ГВГО выкипает в пределах 320-540°С. При его получении необходимо обеспечить в нем содержание фракций до 450°С более 45%. Если количество этих фракций составляет менее 45% при работе на смесевом сырье, следует снизить долю мазута во избежание увеличения выхода кокса и потери активности катализатора. Мазут смеси белорусских нефтей имеет начало кипения 320-350°С. Для обеспечения полного испарения его в смеси с ГВГО в реакторе и минимального коксообразования содержание в нем фракций, выкипающих до 450°С, должно быть не менее 40%. При этом доля таковых в сырьевой смеси должна составлять не менее 43%. Фракционный состав ГВГО и мазута определяется работой ректификационных колонн секции первичной перегонки нефти, установок вакуумной дистилляции мазута и гидроконверсии. С уменьшением в сырьевой смеси количества фракций, выкипающих до 450°С, повышается ее плотность, возрастает содержание полициклических углеводородов и асфальтосмолистых веществ, которые при крекинге вызывают усиленное коксообразование. Поэтому плотность при 20° не должна превышать 900 для ГВГО, 930 для мазута и 915 кг/м3 для сырьевой смеси. В то же время установлено, что с увеличением плотности сырья до 900 кг/м3, в том числе и при вовлечении в него остаточных компонентов, прямо пропорционально возрастает октановое число бензина каталитического крекинга (рис. 1).

Рисунок 1– Влияние плотности сырья (при конверсии 73%) на октановое число бензина (ИМ) каталитического крекинга.

Это, по мнению специалистов, связано с тем, что при крекинге полициклических ароматических и гибридных углеводородов, смол и асфальтенов, во-первых, образуется большое количество моноциклических ароматических углеводородов и, во-вторых, за счет блокирования наиболее активных кислотных центров полиароматическими углеводородами снижается скорость перераспределения водорода и повышается выход непредельных соединений. В результате в бензиновой фракции накапливаются ароматические и олефиновые углеводороды, обладающие достаточно высокими октановыми числами. Кроме того, возможна дополнительная ароматизация бензина за счет реакций дегидрирования под влиянием отлагающегося никеля, концентрация которого в сырье при увеличении его плотности и конца кипения возрастает. Однако при уменьшении в сырье количества относительно легких фракций и повышении вследствие этого его плотности несколько увеличивается выход кокса, снижается выход бензина, падает активность катализатора и увеличивается количество вводимого в систему свежего катализатора. Это связано с тем, что в сырье растет содержание полициклических и асфальтосмолистых веществ, крекинг которых сопровождается повышенным коксообразованием. Кроме того, при утяжелении сырья возможно его неполное испарение, что приводит к слипанию частиц катализатора и потере его активности.

По групповому химическому составу наиболее благоприятным для процесса каталитического крекинга является сырье с содержанием парафинонафтеновых углеводородов более 50% мас., т.к. его крекинг обеспечивает повышенный выход бензина при минимальном коксообразовании. В сырье установки MSCC содержание парафинонафтеновых углеводородов достигает 65-70% мас.

Химическую природу сырья процесса каталитического крекинга можно оценить на основе характеризующего фактора (К-фактор), который определяется по уравнению:

  • относительная плотность сырья.

Характеризующий фактор можно рассчитать, если имеются данные по фракционному составу сырья с фиксированием отбора фракций при пяти значениях температуры, в том числе при температуре 90% об. отгона. Эти данные нужны для определения средней температуры кипения.

Для парафинистого сырья К-фактор составляет более 12, парафинонафтенового – 11,5-11,6 и для сырья с преобладанием ароматических углеводородов – менее 11,5. При оценке характеризующего фактора сырья установки MSCC, его можно определить только для ГВГО, для которого он ориентировочно равен 12, что указывает на его преимущественно парафиновую природу.

Однако следует иметь в виду, что высокое значение характеризующего фактора сырья снижает октановое число бензина, получаемого в процессе каталитического крекинга (рис. 2).

Рисунок 2 – Влияние характеризующего фактора на октановое число бензина (ИМ) двух промышленных установок, эксплуатируемых на сырье, полученном из различных нефтей

Сернистые и азотистые соединения в сырье каталитического крекинга оказывают отрицательное влияние как на сам процесс, так и на качество получаемых продуктов. Поэтому желательна предварительная очистка вакуумного газойля, используемого в качестве сырья, что дает следующие преимущества:

  • обеспечивается повышенная степень превращения (более высокий выход пропилена, сжиженного нефтяного газа и бензина; меньший выход легкого рециркулирующего газойля) за счет снижения содержания в сырье азота и ароматики;
  • уменьшается содержание серы в продуктах; снижается количество выбросов SOх и NOх .

Обычно предварительная очистка заключается в гидрооблагораживании сырья. Таблица 2 иллюстрирует влияние глубины предварительной гидрообработки сырья на свойства сырья каталитического крекинга, выход и качество продуктов (по данным фирмы SHELL GLOBAL SOLUTIONS).