Физико-химические свойства нефтей

С развитием техники повышаются требования к ассортименту и ка­честву нефтей и нефтепродуктов, что, в свою очередь, требует совершен­ствования процессов их производства. Поэтому качества, как товарной нефти, так и продуктов ее переработки, подлежат обязательному контро­лю. Организацию контроля качества невозможно осуществлять без стан­дартов на нефтепродукты и методов их испытания. Задачи стандартизации многообразны. Это и удовлетворение более высоких требований к выпус­каемой продукции технологии транспорта, защита интересов потребителя, также и интересов изготовителя — от необоснованных претензии.

государственные на нефтепродукты

Соблюдение государственных стандартов обязательно для всех предприятий и организаций, причастных к транспорту и хранению нефтей и нефтепродуктов, тогда как другие имеют ограниченную сферу влияния. В этих документах устанавливается перечень формулируемых физико-химических, наиболее важных эксплуатационных свойств, допустимые значения ряда констант, имеющих специфическое назначение и условие использования.

показателем качества.

Приёмосдаточный

Контрольный

Тот или иной метод анализа дает надежные результаты только тогда, когда его проводят в установленных стандартами условиях. Всякое отсту­пление от стандартных методов не допускается, т. к. даже одно и то же свойство для различных нефтепродуктов определяется различными мето­дами. Свойства нефтей и нефтепродуктов многообразны, способны оказы­вать взаимное влияние и требуют всестороннего изучения.

Нефть и нефтепродукты представляют собой сложную жидкую смесь близкокипящих углеводородов и высокомолекулярных углеводород­ных соединении с гетероатомами кислорода, серы, азота, некоторых ме­таллов и органических кислот. Определить индивидуальный химический состав нефти практически невозможно, поэтому ограничиваются опреде­лением группового химического состава, т.е. отдельных рядов и групп уг­леводородов.

Несмотря на многообразие углеводородов, основными структурны­ми элементами нефти являются углерод и водород, а элементарный состав колеблется в небольших пределах: углерод 83-87%, водород 11-14%. На долю других элементов, объединяемых группой, смолисто-асфальтеновые вещества представляют собой высокомолекулярные органические соеди­нения, содержащие углерод, водород, серу, азот и металлы. К ним относят­ся: нейтральные смолы, растворимые в бензинах; асфальтены, не раство­римые в петролейном эфире, но растворимые в горячем бензоле; карбены, растворимые в сероуглероде; карбониты, ни в чем не растворимые. При сгорании нефти получается зола (сотые доли процента), состоящая из оки­слов кальция, магния, железа, алюминия, кремния, натрия и ванадия. Кста­ти, соединения последнего являются переносчиками кислорода и способ­ствуют активной коррозии.

14 стр., 6516 слов

Происхождение нефти и газа (3)

... в ней растворённых газов). Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может ... - насыщенные циклические соединения, характеризующиеся формулой CnH2n, оба атома водорода в которых могут быть замещены алкильными группами. 3) Ароматические ... залежи были обнаружены в США. Дальнейшее развитие разведочных работ в СССР и в США завершилось открытием залежей, ...

Элементарный

Определить индивидуальный химический состав нефти практически невозможно, поэтому ограничиваются определением группового химиче­ского состава, т.е. отдельных рядов и групп углеводородов. Углеводоро­ды, различающиеся содержанием углерода и водорода в молекуле, а также строением, являются основным компонентом нефти. Углеводороды приня­то разделять на парафиновые (насыщенные алканы), нафтеновые и аро­матические. Преобладание той или иной группы углеводородов придает этим продуктам специфические свойства. В зависимости от преобладания в нефти одного из трех представителей углеводородов (более 50%) нефти именуются метановые, нафтеновые или ароматические. В случае, когда к доминирующему присоединяется другой углеводород в количестве не ме­нее 25%, то им дают комбинированное название, например, метанонафтеновые.

нефть

С помощью табл. 1.2 и 1.3 (см. приложение 1) можно проследить изменение физико-химических, теплофизических и опасных свойств чистых углеводородов. Можно заметить также, что даже у углеводородов, имеющих одну химиче­скую формулу, ряд показателей отличается по величине.

фракциями.

Эти фракции являются базовыми для получения товарных нефтепродук-тов, ассортимент которых достаточно велик и весьма разнообразен. Отече­ственной промышленностью освоен выпуск свыше 500 наименований нефтепродуктов, поэтому на рисунке 1.1 даны показатели только тех, которые за­нимают значительное место в грузообороте объектов хранения или часто встречающихся в повседневной жизни.

светлые, темные, пластичные смазки и нефтехимические продукты.

В процессе перегонки составляющие его компоненты отгоняются в порядке возрастания их температур кипения. При определении фракци­онного состава по ГОСТ 2177-82 перегонку ведут до 300°С. При этом от­мечают температуру начала перегонки (н. к. ) и объемы дистиллятов при 100, 120, 150, 160°С, а далее через каждые 20°С до 300°С. Обычно бензи­новые фракции выкипают в пределах 35¸205°С, керосиновые — 150¸315°С, дизельные — 180¸420°С, тяжелые масляные дистилляты — 420¸490°С, оста­точные масла — выше 490°С.

Перегонку нефтепродуктов с температурами кипения до 370°С ведут при атмосферном давлении, а с более высокими — в вакууме или с приме­нением водяного пара (для предупреждения их разложения).

Кстати, авто­мобильные бензины А-72, А-76, АИ-93 имеют практически один и тот же фракционный состав. Авиационные бензины отличаются повышенным со­держанием легких фракций. Содержание в продукте тех или иных фракции определяется техническими условиями на данный нефтепродукт и зависит от его назначения. Нефти классифицируются по содержанию в них бензи­новых, керосиновых и масляных фракций.

Фракционный состав нефтяных смесей определяется обычно про­стой перегонкой с дефлегмацией или ректификацией, разгонку легких фракций проводят при низких температурах и повышенных давлениях, средних фракций — при атмосферном давлении, тяжелых фракций — в ва­кууме. Для разгонки используют специальные аппараты: Энглера, Богда­нова, Гадаскина, АРН — 2 и др. Фракционный состав легких нефтяных фракций рекомендуется определять также хроматографическим методом, который по сравнению с традиционными ректификационными методами имеет ряд преимуществ: он позволяет наряду с фракционным составом смеси определять индивидуальный углеводородный состав бензиновых фракций, сокращает время анализа, уменьшает величину пробы, повышает надежность метода и дает возможность использовать однотипную аппара­туру.

14 стр., 6557 слов

Принципы промышленной первичной переработки нефти

... продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти: к перв

методами фракционной разгонки смеси на лабора­торной ректификационной колонке

наиболее «чувствительна» к изменению углеводородного состава вязкость нефти.

При обработке данных о свойствах нефтей для определения фракций Ф р , выкипающих при температуре до 200°С в ТюмГНГУ была получена эмпирическая зависимость

Элементарный 1 (1.1)

где Ф р фракционный состав нефти при 200°С, % вес; h0 — параметр, характеризующий характеризующий степень изменения динамической вязко­сти при изменении температуры.

Для нефтей с динамической вязкостью h 20 £37 МПа и плотностью r20 = 795-890 кг/м3 параметр h0 можно определить по формуле

Элементарный 2 (1.2)

где h 20 и h50 динамическая вязкость нефти, соответственно, при температурах 20 и 50°С, Пас.

Формула (1.2) была проверена на различных нефтях более 200 ме­сторождений Западной, Восточной Сибири, Башкирии, Казахстана, Став­ропольского края и справедлива для абсолютного большинства нефтей с температурой начала кипения до 85° С и содержанием парафинов и смол до 25%.

Относительная ошибка при определении фракционного состава неф­тей отечественных месторождений при 200°С по формуле (1.2) составляет около 20% и объясняется различием содержания в нефтях смол, парафинов и других примесей. Несколько большие отклонения при расчете наблюда­ются для среднеазиатских нефтей, проявляющих аномальные и вязкопластичные свойства. Дополнительные исследования позволили установить, что для нефтей ряда регионов: Башкирии, Татарстана, Пермской области, Удмуртии расчеты по формуле (1.2) дают заниженные результаты, для нефтей Западной и Восточной Сибири, Сахалинской области — завышен­ные. Обработка полученных результатов методами математической стати­стики позволила уточнить предложенную формулу и рекомендовать ее к использованию в следующем виде:

Элементарный 3 (1.3)

где К г — коэффициент, учитывающий глубину стабилизации нефти на промысле или потерю нефти в резервуарных парках; n показатель вяз­кости, для Башкортостана и Куйбышевской области n = 0,680, Татарстана — 0,685, Саратовской области, Западной и Восточной Сибири — 0,66, Саха­линской области — 0,655, Пермской области и Удмуртии — 0,675, для турк­менских, узбекских и таджикских нефтей n= 0,64, Казахстана — 0,675.

19 стр., 9433 слов

Свойства и показатели качества нефти

... нефть, определяемым по стандартным методикам, относят плотность, вязкость, температуру застывания и иные физ.-хим. показатели, состав растворенных газов и количеств. содержание смол, смолисто-асфальтеновых веществ и твердых парафинов ... нефть можно только условно. 1.4 Методы исследований Для оценки качества нефти ... его требование-существование крупных областей погружения земной коры (осадочных ...

Таким образом, при отсутствии фактических данных об углеводо­родном составе нефти для практических инженерных расчетов можно ре­комендовать формулу (1.3), обеспечивающую погрешность расчетов не более 10%.

Известно, что физические свойства нефти зависят от преобладания в них отдельных углеводородов или различных их групп. Например, боль­шое содержание в нефти парафинов, смол и асфальтенов повышает ее вяз­кость, особенно при пониженных температурах. В зависимости от состава и ряда свойств производится классификация нефтей, позволяющая выбрать наиболее целесообразный способ транспортировки и хранения.

Во многих нефтях Западной Сибири (усть-балыкская, западно-сургутская и самотлорская и др.) содержание парафина не превышает 4%. Наблюдаются зависимость — чем больше в нефти парафина, тем меньше в ее составе смол и асфальтенов; чем больше геологический возраст нефти, тем больше в ее составе парафина. Высокопарафиновые нефти характеризуются наименьшим содержанием серы, ванадия и никеля. Высокое содержание парафина в нефти существенно ослож­няет и удорожает процессы ее добычи, транспортировки и переработ­ки. При добыче высокопарафинистых нефтей снижается и даже пол­ностью прекращается дебит скважин из-за закупорки их так называе­мыми асфальто-парафиновыми отложениями (АСПО).

АСПО из сква­жин приходится удалять механическим путем, тепловой обработкой, промывкой растворителями.

Парафин при перекачке высокопарафиновых нефтей отлагается на внутренних стенках трубопровода. В магистральных трубопроводах толщина отложений парафина достигает 30 мм. Чтобы предотвратить это явление, при транспортировке нефтей применяют способ горячей перекачки. При этом каждые 25—150 км длины трубопровода нефть дополнительно подогревают. Одним из крупнейших в мире горячих нефтепроводов является трубопровод «Усть-Гурьев-Куйбышев», пере­качивающий высокопарафиновые мангышлакские нефти. Мангышлакские нефти перед закачкой в трубу нагревают до 67-77 °С.

По содержанию серы

Азот,

попутным.

Плотностью

с относительной плотностью

Удельным весом

g=rg (1.4)

где — r плотность вещества, кг/м; g ускорение силы тяжести.

относительного удельного веса

r i =r20 -x(t-20), (1.5)

где x — поправка на изменение плотности при изменении температу­ры на 1°С; r 20 плотность нефти или нефтепродукта при t = +20°С.

Значения r некоторых простых углеводородов приведены в табл. 1.3. (см. приложение 1) Плотность нефтей и нефтепродуктов для практических измерений считает­ся аддитивной величиной.

Плотность нефтей и нефтепродуктов

Плотность нефтей и нефтепродуктов 1

где (x i — плотность i-го нефтепродукта объемом в общем объеме. На практике плотность нефтепродуктов, нефтей и их смесей опреде­ляют ареометрическим, пикнометрическим способом или взвешиванием,

Плотность нефтей и нефтепродуктов 2

например, на весах Вестфаля-Мора (см. рис. 1.2. приложение 2).

Плотность большинства нефтей (в том числе северных месторождений Тюменской области (СРТО), (см. табл. 1.5. и 1.6), исследованных в ТюмГНГУ, находится в пределах 825 — 900 кг/м 3 .

Недостаточное знание свойств нефти, например, попавшей в воду в результате утечки или залпового сброса, приводит к тактическим ошибкам при ликвидации нефтяного загрязнения. Нередко, отождеств­ляя свойства нефтяного пятна на поверхности воды со свойствами неф­ти, такое пятно пытаются поджечь. Однако без специальной подготовки это сделать невозможно. Следует учитывать, что нефтяное пятно взаи­модействует с водой и воздухом, образуя эмульсию с трудно прогнози­руемыми характеристиками. Поскольку сбор нефти с поверхности воды почти всегда осуществляется с помощью технических средств, необхо­димо учитывать наличие в нефтяном загрязнении фракций с температу­рой вспышки паров менее 60°С, недопустимых с точки зрения пожарной безопасности, наличия пыли, а также наличия растворенного газа.

Плотность нефти — важный фактор, который следует учитывать при очистке водных поверхностей.

Приведённые а ТюмГНГУ экспериментальные исследования нефтей, показывают, что при одном и том же уровне потерь плотность нефти будет зависеть от скорости испарения и от доли потерь лёгкой фракции. Скорость испарения нефти определяется также (как установлено выше) температурой tн , скоростью ветра Jв , продолжительностью испарения t и высотой взлива hВ3

Многочисленные экспериментальные данные (более 400) по изменению плотности нефтей были обработаны методом наименьшего квадрата, и в результате была получена эмпирическая зависимость

Плотность нефти важный фактор 1 (1.7)

где r,r н – плотность нефти при величине потерь s и исходной нефти соответственно.

Теоретически молекулярная масса смеси аддитивно складывается из молекулярных масс отдельных компонентов. Однако для этого необ­ходимо знать молярные (объемные) концентрации всех компонентов, входящих в данную смесь. Последнее, как уже указывалось выше, на практике не всегда возможно. Кроме того, как в стабильном, так и в деэтанизированном конденсате практически всегда находятся углеводо­родные газы, которые «смазывают» законы, полученные для чистых ве­ществ, существенно изменяя такие параметры, как давление насыщен­ных паров, вязкость и температуру начала кипения. Вероятно, этим можно объяснить разброс экспериментальных значений и рассчитанных по формулам.

В ТюмГНГУ в результате анализа на ЭВМ, данных пассивных и активных экспериментов (всего около 500) получены математические модели, позволяющие по известной плотности смеси определить моле­кулярную массу газового конденсата.

Для ДК (r£780 кг/м 3 ) математическая модель имеет вид

m ДК =0,2432r20 -65, (1.8)

Для СК (r£740¸800 кг/м 3 )

m СК =0,786r20 -474.63, (1.9)

Отклонения экспериментальных данных от расчётных по формулам (1.8¸1.9) можно проследить по графикам рис 1.3.

внутренним

Явление внутреннего трения в жидкости с ее вязкостью было связа­но Ньютоном известной формулой

Плотность нефти важный фактор 2 (1.10)

где t — напряжение внутреннего трения; dv/ dR — градиент скорости по радиусу трубы или относительное изменение скорости по направлению, перпендикулярному к направлению течения, т.е. приращением скорости на единицу длины нормали; h коэффициент (касательное усилие на единицу площади, приложенное к слоям жидкости, отстоящим друг от друга на расстоянии, равном единице длины, при единичной разности скоростей между ними).

Внутреннее трение, характеризуемое величиной, Пуазейлем

Внутреннее трение 1

где h — коэффициент внутреннего трения (динамическая вязкость); Р – давление, при котором происходило истечение жидкости; t — время истечения жидкости в объёме V, L – длина капилляра; r – радиус капилляра.

Единицей динамической вязкости

Н × с/м2 или Па × с .

Единица динамической вязкости, выраженная в физической системе измерения СГС, в честь Пуазейля называется Пуазом, т.е. за единицу ди­намической вязкости принимают сопротивление, которое оказывает жид­кость при относительном перемещении двух ее слоев площадью 1 см2 , от­стоящих друг от друга на 1 см, под влиянием внешней силы в 1 дн при скорости перемещения в 1см 1с. Динамическую вязкость при температуре t обозначают ht .

удельная вязкость,

текуче­сти

ньютоновскими,

структурной вязкостью.

пластичные, псевдопластнчные и дилатантные.

пластических

Единицей динамической вязкости 1

Это уравнение после почленного деления на dv/ dR можно предста­вить в виде

h 0 =h+h0 (1.11)

где h 0 эффективная или кажущаяся вязкость; h — истинная вяз­кость; h0 — структурная составляющая эффективная вязкость.

Псевдопластичные

Единицей динамической вязкости 2

где k и n — постоянные величины для данной жидкости. Характер­ным для псевдопластичных жидкостей является то, что n всегда меньше единицы.

Дилатантные

У многих жидкостей зависимость между напряжением и градиен­том скорости изменяется во времени и поэтому не может быть выра­жена простыми формулами.

коэффициент кинематиче­ской вязкости,

Единицей динамической вязкости 3 (1.13)

см 2

Вязкость нефтей и нефтепродуктов зависит от температуры, увеличиваясь с ее понижением.

Единицей динамической вязкости 4 , (1.14)

Единицей динамической вязкости 5 (1.15)

где U коэффициент крутизны вискограммы, 1/К; v*,v кинематическая вязкость при известной температуре Тж и при температуре Т; е — основание натурального логарифма.

Для нахождения коэффициента крутизны вискограммы для данного продукта достаточно знать значения вязкостей при двух температурах Т1 и Т2

Динамическая и кинематическая вязкости — это вполне определен­ные физические характеристики, которые, как и все другие величины, вы­ражены в абсолютных единицах и могут быть подставлены в те или другие расчетные формулы. В случаях, когда вязкость применяется не как расчет­ная величина, а как практическая характеристика нефтепродукта, ее при­нято выражать не в абсолютных, а в относительных, или условных, едини­цах.

вязкость.

Условную вязкость

Как сказано выше, вязкость характеризует свойство данной жидко­сти оказывать сопротивление при перемещении одной части жидкости относительно другой. Такое сопротивление наблюдается как при движении жидкости относительно какого-либо тела, так и при движении какого-либо тела в жидкости. Оба эти случая дают принципиальную возможность из­мерения вязкости различными способами. Наиболее удобным способом измерения вязкости при движении жидкости относительно твердого тела является наблюдение над истечением исследуемых жидкостей из капил­лярных трубок. Для расчета пользуются формулой Пуазейля. Для расчета значений вязкости при движении каких-либо тел в жидкости может быть применен ряд формул, в которых учитываются характер движения и форма движущегося тела. Из этих формул наибольшее значение имеет приводи­мая ниже формула Стокса для расчета вязкости по скорости падения твер­дого шарика в жидкости. Способы измерения вязкости, основанные на ис­течении жидкости из капиллярных трубок, широко распространены. На­против, способы, построенные на принципе движения твердого тела опре­деленной формы в вязкой жидкости, применяются сравнительно редко вследствие того, что даже для тел простейшей формы соответствующие уравнения движения получаются очень сложными. Эти способы находят себе применение преимущественно в тех случаях, когда способы, основан­ные на втором принципе, т.е. на истечении жидкости из капилляров, прак­тически неприменимы вследствие экспериментальных трудностей.

Вязкость нефти изменяется в широких пределах и зависит от ее со­става, количества растворенного газа, примесей в некоторой степени, от давления, температуры, увеличиваясь с ее понижением.

Пересчет вязкости с одной температуры на другую связан с некото­рыми особенностями и на практике иногда сопровождается ошибками. В справочной литературе обычно приводятся сведения о вязкости нефтей при весьма ограниченных условиях и значениях температур. Чаще всего это температуры 20 и 50°С или 50 или 100°С. Нахождение коэффициента крутизны вискограммы позволяет определить вязкость только н интервале за­данных температур. А вот интерполяция результатов вне заданных интерва­лов недопустима, особенно для высоковязких и парафинистых нефтей. С уменьшением температуры ошибка расчетов может составлять 200-300%, а в ряде случаев расчет может быть связан с абсурдным результатом, по­скольку многие нефти теряют текучесть при достаточно высоких темпера­турах 20-25°С.

просачиваемости

Вязкость нефтей и нефтепродуктов не является аддитивным свойством, поэтому ее нельзя вычислить как среднее арифметическое.

Отсутствие хорошо разработанной теории жидкого состояния препятству­ет развитию теоретических методов расчета вязкости жидкости. Поэтому в инженерных расчетах большое распространение получили различные ла­бораторные и эмпирические методы вычисления вязкости чистых веществ и их смесей.

1. «Эксплуатация магистральных нефтепроводов». Справочное издание. Под общей редакцией Ю.Д. Земенкова. – Тюмень: ТюмГНГУ, 2000.

Таблица 1.1. Показатели качества товарной нефти.

Показатель Группа нефти Метод испытаний, погрешность, %
I II III
Содержание воды, %, не более 0,5 1 1 ГОСТ 2477-65, 6,0
Содержание хлористых солей, мг/л, не более 100 300 800 ГОСТ 21534-76, 10,0
Содержание мех. Примесей, %, не более 0,05 0,05 0,05 ГОСТ 6370-83, 20,0
Давление насыщенных паров, Па , не более (ГОСТ 1756-52) 66650 66650 66650 СТ СЭВ 3654-82

Таблица 1.2. Физико-химические свойства нефтей (ТУ-1623-93)

№ п/п Наименование показателя Норма для типа Метод испыта­ния, погреш­ность
I II III IV
1. Плотность при 20 °С, кг/м3 , не более 850 870 890 895 По ГОСТ 3900-85, 0,1%
2.

Выход фракций, % (об.), не менее:

при температуре до 200 «С;

при температуре до 300 V;

при температуре до 350 °С.

55

21 43 53

21 41 50

19

35

48

По ГОСТ 2177-82, 5,0%
3. Массовая доля серы, %, не более 0,6 1,8 2,5 3,5 По ГОСТ 1437-75,4,0%
4. Массовая доля парафина, %, не более 6 6 6 Не нор­мируется По ГОСТ 11851-85,10,0%
5. Концентрация тяжелых ме­таллов: ванадия, никеля и др. До 01.01.94 г. Не нормируется. Определение производят для набора данных По ГОСТ 10364-90,10,0%.

Таблица 1.5. Физико-химические свойства нефтей. (27)

Месторождение нефти

Плот­ность при 20°С кг/м3

Кинематическая вязкость, cCm, при:

Температура, V

t=20°С

T=50°С

Застыва­ния

кипения

Ромашкинскос

862

14,22

5,9

+65

Туймазинское

852

7,072

3.24

-59

Мухановское

840

7,65

3,46

-8

Узеньское

860

при t=40° 24,0

11,18

+31

+77

Трехозерное

848

9,75

2,98

+85,5

Тетерево-Мартымьинское

825

4,12

2,17

+61

Правдинское

854

10,76

4,75

+72

Салымское 826 4,54

2,17

Ниже – 16

+50

Южно-Балыкское

868

16,58

8,53

+81

Мамонтовское

878

21,51

8,15

+90

Усть-Балыкское

874

17,48

8,37

+71,7

Лянторское

887

16,14

7.11

+80

Зап.-Сургутское

885

41,60

12,11

+84

Холмогорское

860

7,83

3,53

+64

Покачаевское

865

5,52

3,88

-9

+79

Мегионское

850

7,82

3,56

+77

Советское

852

6,13

3,41

+62

Самотлорское

851

4,94

2,49

+59

Варьеганское

832

4,37

1,78

-1

+32

Первомайское

844

4,30

2,14

ниже-16

+57

Таблица 1.3. Физико-химические свойства чистых углеводородов.

Параметр Метан Этан Этилен Пропан Пропи­лен н-Бутан Изобутан н-Бутилен Изобутилен Пентан
Химическая формула СH 4 С 2 H6 C 2 H4 С 3 Н8 C 3 H8 н-C 4 H10 i-C 4 H8 н-C 4 H8 i-С 4 Н8 C 5 H12
Плотность газовой фазы, кг/м’1 0,72 1,356 1,261 2,019 1,915 2,703 2,665 2,55 2,5 3,457
Плотность по воздуху: н. у.; (кг/м3 ) ст. у.

0,55

0,52

1,05

0,98

0,98

0,91

1,55

1,44

2,99

1,95

2,0

1,8

2,65

2,48

Температура кипения, ‘С -161 -88,5 -103,7 -42,1 -47,7 -0,5 -11,13 -6,9 3,12 36,07
Температура критическая, «С -82,1 32,3 9,7 96,8 92,3 152 134,98 144,4 155 196,6
Давление критическое, МПа 4,58 4,82 5,03 4,21 4,54 3.74 3,62 3,945 4.1 3,33

Уд. теплоемкость газа: Ср,

Сv

жидкости ,кДж/кг- °С,

2,171

1,654

3,461

1,65

1,373

3,01

1,465

1,163

2,415

1,554

1,365

2,23

1,432

1,222

1,596

1,457

2,239

1,596

1,457

2,239

1,487

1,339

1,604

1,339

1,6

1,424

2,668

Скрытая теплота исп-я, кДж/кг 512,4 487,2 483 428,4 441 390,6 382,9 441,6 399 361,2
Температура воспламенения, ‘С 545-800 530-694 510-543 504-588 455-550 430-569 490-510 440-500 400-440 284-510
Октановое число 110 125 100 125 115 91 99 80 87 64
Вязкость газа v , 106 м2 14,71 6,45 7,548 3,82 4,11 2,55 2,86 3,12 3,18 2,18
Вязкость жидкости h , 106 Па-с 66,64 162,7 135,2 130,5 210,8 188,1 284,2

Пределы взрываемости при н.у., %: нижний;

  • верхний.

5

15

3

12,5

3

32

2

9,5

2

11

1,7

8,5

1,7

8,5

1,7

9

1,7

8,9

1,35

8

Коэффициент С в уравнении Сотерланда 164 252 225 278 377 329 382

Плотность жидкости, кг/м3 , н. у.;

  • ст. у.

300

120

390

230

370

230

500

390

520

540

610

560

620

640

Объем паров с жидкости: л/л;

л/кг.

417

1393

278

747

316

797

257

508

225

386

239

398

194

311

Удельная газовая постоянная, Дж/(кг ×К) 519 276 296 189 143 148 115

Таблица 1.4. Характеристики нефтей северных месторождений Тюменской области (СМТО)

пласт Dn H*

Новопортовское.

X*

БУ-10 — 11

СКВ.

2349

БУ12

СКВ

6252

по м/р

проба ТН

СКВ. НП4

131

пласт 10

скв.115 НП-23

БУ 8-9

Плотность, кг/м3

951

844

827

844

849

843

840

853

844

854

842

835

830

Молекулярная масса, кг/моль

208

173

209

220

207

200

189

223

196

197

Вязкость n мм2 / c :

При 20°С;

  • при 50°С.

245

20

3,7

16

2,8

21

3,6

22

3,9

7,8 3,65

18

3,1

9-19

3,78

3,1

2,5

4,6

3,1

3,1

5,7

Содержание % масс.:

парафинов (ГОСТ 11851-85); асфальтенов; смол.

0,54

2,10 11,0

8,3

0,16 2,54

8,2

0,13 2.92

7,1

0,20 2,53

12,1

0,08 4,02

8,1

0,13 2,59

7,9

0,12 3,01

8,80

0,14

5,00

5,0

0,2

2,98

6,8

0,39

3,98

6,7

0,03

1,76

4,2

0,07

2.73

2,1

0,9

6,0

Начало кипения, °С, фракционный состав, % объем: до 150°С;

  • до 200°С;
  • до 250°С;

до 300° С.

10,2 19.5 29,2 45,0

20,0 30,5 40,0 52.0

11,9 21,5 31,9 46,5

6,5 14,5 24,0 39,0

9,6 19,2 29,2 45,3

12,8

22,1

31,5

50,5

7,5

17,0

27,0

43,0

6,7

16,9

30,5

49,0

26,5

53.0

Температура застывания, *С (ГОСТ 20287-74)

-18

+14

21

10-20

18

0

+4

+6

+15

+20

Примечание; В*, Н*, X* — нефти Ван-Еганского, Новопортовского и Харьягинского месторождений соответственно.

Единицей динамической вязкости 6

Рис. 1.1. Фракционный состав нефтей и конденсатов.

Конденсаты: 1 – Харасавейский; 2 – Печорокожвинский; 3 – Уренгойский;

4 – Василковский; 5 – Вуктыльский; 6 – Средневиюльский; 7 – Нефть СМТО;

8 – ДК.

Единицей динамической вязкости 7

Рисунок 1.2.

1 — коромысло; 2 – неподвижный штатив; 3 – регулировочный винт;

4 ¸ 6 — неподвижное остриё; 5 ¸ 7 — левое и правое плечё; 9 – поплавок;

10 ¸ 14 разновесы – рейтеры

Единицей динамической вязкости 8

Рис.1.3. Зависимость молекулярной массы конденсата от плотности

l — для дэетанизированного (ДК); n — для стбильного (СК) конденсата.