Разработка цифрового вольтметра

Курсовая работа

Цифровая измерительная техника является основной и наиболее развивающейся частью измерительной техники, представляет собой совокупность цифровых измерительных приборов (ЦИП), методов их проверки и правил эксплуатации.

Средства цифровой измерительной техники наилучшим образом сопрягаются со средствами вычислительной техники, обладают высокой точностью и быстродействием.

Цифровыми называются такие измерительные устройства, в которых измеряемая величина автоматически в результате квантования и цифрового кодирования представляется кодовым сигналом, выражающим значение измерительной величины.

Цифровые измерительные устройства разделяются на цифровые измерительные приборы (ЦИП) и аналого-цифровые преобразователи (АЦП), ЦИП являются автономными устройствами, выдают значения измеряемой величины автоматически в визуальном виде на отдельном цифровом отсчётном или регистрирующем устройстве.

АЦП не имеет отсчётных или регистрирующих устройств. Являются частью ЦИП или более сложных измерительно-информационных систем и выдают результат измерения обычно в виде электрического кодового сигнала.

Основные направления создания ЦИП:

  • разработка ЦИП со встроенным микропроцессором, с автоматизацией выбора пределов и рода измеряемой величины;
  • разработка ЦИП высокого быстродействия с параллельными и комбинированными структурами.

Разработка ЦИП с узлами различного функционального преобразования.

Одну из групп среди ЦИП составляют цифровые вольтметры (ЦВ) постоянного тока. ЦВ используются как отдельные приборы, служат основой цифровых мультиметров (ЦМ), позволяющих измерять различные электрические величины и параметры электрических цепей.

ЦВ обладают следующими свойствами (достоинствами)- высокой точностью измерения напряжения (0.001%); широким диапазоном измерений при высокой чувствительности (от 10 до 10 В); отсчётом в цифровой форме (практически исключающем глазомерные ошибки и создающим удобство наблюдения на расстоянии); быстродействием (до 10 изм/с); автоматическим выбором предела и полярности; возможностью получения результатов наблюдений в форме, удобной для ввода в ЭВМ; возможностью вывода на интерфейсную шину и включение в состав измерительно-вычислительного комплекса.

По схемному решению ЦВ делят на две основные группы: с жёсткой логикой и микропроцессорным программным управлением.

По методу аналого-цифровые преобразования различают ЦВ со следующими видами преобразований:

7 стр., 3149 слов

Современная информационно-измерительная техника

... измерительный преобразователь совместно с остальными параметрами. Целью курсовой работы является привитие навыков самостоятельного применения в исследованиях и расчетах знаний по основам измерительной техники, ... Возможно преобразование выходного сигнала в цифровой код, допускающий дальнейшую обработку ... Оно используется для импульсного измерения величины потока, достигающего чувствительной поверхности ...

  • время — импульсным (с одно-, двух-, и трёхкратным интегрированием);
  • по методу поразрядного кодирования;
  • напряжения в частоту (частотно- импульсным преобразованием);
  • комбинированные, сочетающие несколько методов.

По элементной базе ЦВ разделяются на приборы, выполненные на электронных лампах, полупроводниковых приборах, интегральных микросхемах и микропроцессорах. В настоящее время основной парк составляют ЦВ, выполненные на цифровых и аналоговых микросхемах средней степени интеграции.

Широкое применение находят специальные микросхемы, заменяющие целые функциональные блоки ЦВ. Практически все ЦВ выполняются с применением печатного монтажа и использовании автоматизированных технологических установок при их монтаже.

1. Структурная схема вольтметра

Структурная схема вольтметра приведена на рисунке 1, а графики, поясняющие работу схемы на рисунке 2.

Рисунок 1 — структурная схема вольтметра с двойным интегрированием напряжения.

В начале цикла устройство управления вырабатывает прямоугольный импульс калиброванной длительности Т 1 , который подается на электронный переключатель. И за время Т1 с входного устройства через электронный переключатель на интегратор подается входное напряжение постоянного тока. Начинается первый такт интегрирования “вверх”, при котором выходное напряжение интегратора растет по линейному закону:

;

  • где Uвых — напряжение на выходе интегратора, В;
  • R — сопротивление, Ом;
  • C — емкость конденсатора, Ф;
  • Uвх — входное напряжение, В;

t1 — начальный момент интегрирования (момент появления фронта импульса Т 1 );

  • t2 — конечный момент интегрирования.

Крутизна этого напряжения пропорциональна входному напряжению Ux. В момент t 1 (рисунок 2), когда наступило окончание первого импульса, триггер из состояния «0» перебрасывается в состояние «1» , а электронный переключатель отключает входное напряжение от интегратора и к интегратору подключается источник опорного напряжения.

Напряжение на компараторе остается равным «1». И начинается второй такт интегрирования “вниз”, т.к. источник опорного напряжения имеет противоположную полярность по отношению к измеряемому напряжению. Напряжение на выходе интегратора линейно убывает. И в момент t 2 , когда напряжение на выходе интегратора будет равно «0», тогда компаратор переключится из состояния «1» в состояние «0». И в этот же момент триггер закроется, т.е. на его выходе будет состояние «0» (рисунок 2) во время второго такта, когда триггер открыт ( рисунок 2.г), через него проходят импульсы высокой частоты (рисунок 2.е) на временной селектор, т.е. во временном селекторе импульс, который приходит с триггера, заполняется импульсами высокой частоты, приходящих с генератора тактовой частоты. Это количество импульсов пропорционально измеряемому напряжению.

Начало следующего цикла задается фронтом импульса Т 1 .

Т 1 .

Рисунок 2 — Графики, поясняющие принцип работы вольтметра

2. Расчёт основных параметров вольтметра

Напряжение на выходе интегратора при интегрировании «вверх» в произвольный момент времени (начало отсчета времени — момент появления фронта импульса длительностью Т 1 ):

14 стр., 6687 слов

Анализ и исследование схем преобразователей напряжение-частота

... преобразователей напряжения в частоту по описанному методу. Другой метод преобразования напряжения реализован в схеме на рис. 1.2,а. Рис. 1.2. Преобразователь на интеграторе (а), форма напряжения ... работу преобразователей напряжение-частота 1. Интегратор ... напряжению U ВХ , то схема представляет собой обычный преобразователь напряжения в частоту. Для напряжения на конденсаторе в любой момент ...

; (1)

где RC — постоянная времени интегратора; t — независимая переменная величина (время).

В конце интервала интегрирования напряжение на выходе интегратора:

;

При интегрировании “вниз”:

;

В момент с учетом (1) имеем:

; (2)

Так как процесс интегрирования опорного напряжения заканчивается когда выходное напряжение интегратора становится равным нулю, то, положив в формуле (2) , получим:

(3)

перепишем (3) в виде:

;

  • где tи время управляющего импульса. Т.к. ;
  • где Т время измерения и так как по условию Т=0.1, то

;

;

Из последней формулы выразим время tx:

; ;

  • Пусть опорное напряжение Uоп=1 В;
  • Ux=0.1 В;
  • тогда

с;

с;

Примем t u = 0.1c и вычислим частоту управляющего импульса по формуле:

Гц;

Теперь найдем частоту генератора счетных импульсов:

имп.

Исходя из того, что Nx=1000000, частота счетных импульсов

Таким образом частота управляющих импульсов 10 Гц, а счетных 10000 кГц.

3. Схематика основных узлов цифрового вольтметра

3.1 Входной делитель напряжения

Необходимое напряжение на входе усилителя обеспечивает входной делитель напряжения, представленный на рисунке 3:

Рисунок 3 — Входной делитель напряжения

Примем сопротивление на входе делителя равным 1 МОм. То есть:

R вх = R1 + R2 + R3+ R4;

1000000 = R1 + R2 + R3+ R4;

Рассчитаем номиналы резисторов по формуле:

;

Следовательно, для предела 0-1 В формула будет выглядеть следующим образом:

R2 + R3+ R4= 100000 Ом.

Для предела 0-10 В:

R3+ R4 = 10000 Ом.

Для предела 0-100 В:

R4 = 1000 Ом.

Следовательно:

R3 = 10000 — 1000 = 9000 Ом.

R2 = 100000 — R3 — R4;

  • R2 = 90000 Ом.

R1 = 1000000 — R2 — R3 — R4;

  • R1 = 900000 Ом.

Необходимые резисторы для делителя имеют следующие номиналы, с учётом стандартизированных значений:

R 1 = 900 кОм.

R 2 = 90 кОм.

R 3 = 9 кОм.

R 4 = 1000 Ом.

3.2 Входной усилитель

В качестве входного усилителя используется операционный усилитель общего назначения. В данном случае применим прецизионный операционный усилитель, выполненный на микросхеме К544УД1А (рисунок 4).

Данный операционный усилитель имеет коэффициент передачи 110.

Рассчитаем сопротивления R7 и R6. Примем R6 = 100кОм.

=> R7 = 910 Ом.

В качестве защиты от перенапряжения и обратной полярности используется схема, содержащая компаратор DА4, который реализован на микросхеме К1401СА1.

На вход компаратора подаются напряжения с операционных усилителей DА2 и DА3, которые сравниваются с эталонным значением. Если сравниваемое напряжение выше эталонного, то компаратор открывает транзистор VT1. Срабатывает реле К1, размыкает входную цепь и замыкает цепь питания VD5, который индицирует перегрузку.

Параметры этого операционного усилителя приведены в таблице 1.

Таблица 1 — Параметры ОУ К544УД1А

U ип

U вх

U вых

I пот ,мА

R вх ,Ом

I вх ,нА

15В10%

10

10

3.5

10 9 ..1011

200

Схема электрическая принципиальная входного устройства изображена на рисунке 4.

Рисунок 4 — Схема входного усилителя и устройства защиты от перегрузки.

Кнопка SB4 служит для снятия реле с режима самопитания. Диоды VD1 и VD2 служат для фильтрации необходимой полярности входного сигнала. VD1 пропускает только положительный потенциал, VD2 — отрицательный, позволяя тем самым предусмотреть возможность измерения отрицательного потенциала на входе. Диоды VD3 — VD4 служат для фильтрации отрицательного потенциала на входе компаратора DA4, что в свою очередь обеспечивает необходимый режим работы компаратора.

3.3 Генератор управляющих импульсов

Для функционирования схемы цифрового вольтметра с время — импульсным преобразованием напряжения необходим генератор эталонных импульсов, разрешающих работу схемы счёта. В данном ЦВ время измерения T 0 =0.1с. Таким образом, форма эталонных импульсов рассчитывается в следующем виде:

Для получения импульсов эталонной частоты используется схема формирования импульсов на основе генератора с кварцевой стабилизацией. Так как на выходе генератора частоты с кварцевой стабилизацией имеем 20000кГц, то для получения частоты эталонных импульсов F изм =10000кГц, необходим делитель на 2. Этот делитель реализован на основе двух двоичных двенадцатиразрядных счётчиков DD2,DD4 — К155ИЕ5. На вход DD2 подаются импульсы с генератора. Параметры этого счётчика приведены в таблице 4.

Таблица 2 — Параметры микросхемы К155ИЕ5

U ип

U (0)вых

U (1)вых

I пот ,мкА

10В10%

1.0

9.0

80

Когда на выходе счётчиков значение 400000 (1000011001000111), счётчик сбрасывается.

Схема электрическая принципиальная формирователя импульсов приведена на рисунке 5.

Рисунок 5 — Генератор управляющих сигналов

С микросхем DD2 и DD4 снимается частота 10000кГц. Когда на выходах этих микросхем появится число 10000000(10001001100), тем самым обеспечится деление тактовых импульсов на 2. С микросхем DD3 — DD6 снимается частота 5 Гц (проходит деление частоты на 400000(11000011010100000)).

Рисунок 6 — Генератор тактовых сигналов

Тактовый генератор выполнен на логических элементах D1.1 и D1.2, которые выполняют логическую функцию ИЛИ-НЕ.

Это микросхема К155ЛА3. Микросхемы типа ЛИ (ЛИ1…ЛИ7) выполняют логическую функцию mИ-НЕ. Как отмечалось ранее, функцию можно реализовать с помощью логического элемента И-НЕ, переименовав его логические уровни (такой способ непрактичен), или применив специальную ИС И-НЕ, где напряжение низкого уровня Н соответствует логическому нулю, а напряжение высокого уровня В — логической единице.

Каждый из корпусов ИС типа ЛА содержит от двух до четырёх логических элементов. Основные параметры микросхемы находятся в таблице 1.

Частота генерации задаётся с высокой точностью с помощью кварцевого генератора ZQ1. Был выбран кварцевый резонатор РВ-04 с частотным диапазоном до 20000 кГц. Кварцевый резонатор включен в цепь положительной обратной связи с выхода D1.2 на вход D1.1. Резистор R10 выводит элемент D1.1 в активный режим.

Таблица 4 — параметры микросхемы логического элемента.

Icc, mA

T, C

8.8

-55…+125

3.4 Электронный переключатель

Электронный переключатель SW1 построен на микросхеме КР590КН9. Этот ключ работает следующим образом: при подаче управляющего импульса на #1, соединяется линия 1. При подаче управляющего импульса на #2, соединяется линия 2. На выходе ключа линии 1 и 2 соединены вместе. Элемент «И-НЕ» служит для переключения измеряемого напряжения на опорное напряжение в момент t1 (см. рисунок 2).

Для того чтобы интегратор начал процесс интегрирования «вниз».

Рисунок 7 — Электронный переключатель

3.5 Интегратор

Интегратор предназначен для выполнения математической операции интегрирования. Напряжение на выходе этого устройства пропорционально интегралу от входного напряжения. Такую операцию выполняет инвертирующий усилитель с цепью обратной связи, образованной резистором R и конденсатором С.

Воспользуемся интегратором построенном на микросхеме К544УД1. Рассчитаем постоянную интегратора RC из следующего выражения:

Пусть R19=100 КОм, тогда

Рисунок 8 — Генератор линейно-изменяющегося напряжения.

Таблица 3 — Основные параметры операционного усилителя.

Тип

КР140УД17А

Коэффициент усиления

дБ

>88

Частота единичного усиления

мГц

>0.8

Н-е источника питания

[Электронный ресурс]//URL: https://drprom.ru/kursovaya/voltmetr-tsifrovoy/

В

15

Потребляемый ток

мА

<2.8

Макс. амплитуда вх. напряжения

В

11.5

Напряжение смещения

мВ

4

Ток входной

нА

<200

Сопротивление входное

МОм

>40

Сопротивление выходное

Ом

<150

Макс. допустимое сопр. нагрузки

кОм

2

3.6 Компаратор

Компаратор предназначен для сравнения двух напряжений, поступающих на его входы, и выдачи сигнала об их соотношении, например в момент их равенства. Любой операционный усилитель является компаратором. Если включить операционный усилитель без обратных связей, то при U1>U2 выходное напряжение будет максимально положительным, а при U1<U2 — минимально. Точность сравнения напряжений по выходам оценивается величиной

где Ku — коэффициент усиления. Поскольку Ku компаратора К554СА3 составляет не менее , то точность данного компаратора составит 66.6 мкВ.

В нашем курсовом проекте используется компаратор серии К554СА3. Резисторы R9 и R10 служат для преобразования сигнала на выходе компаратора под ТТЛ логику.

Рисунок 9 — Компаратор

3.7 Схема временного селектора

Схема временного селектора состоит из трех элементов логических «И-НЕ». При подаче на вход управляющего импульса сигнала «единицы», не смотря, что подаем на вход с компаратора, с выхода временного селектора будет выходить сигнал логического «нуля». А если на вход управляющего импульса подается уровень «нуля», а с компаратора поступает сигнал логической «единицы», то на выходе будет «единица».

Сам же временной селектор состоит из одного логического элемента «И». При подаче сигнала логической «единицы» в момент t1 на временной селектор он начинает пропускать импульсы от генератора счетных импульсов. В момент t2 поступает сигнал логического «нуля» и временной селектор закрывается. Число импульсов прошедших за промежуток (t1;t2) подсчитывает счетчик, что пропорционально измеряемому напряжению.

Рисунок 10 — Временной селектор

3.8 Устройство индикации

Схема счёта и индикации реализована на базе четырёх счётчиков с выходом на семисегментные индикаторы (DD9 — DD12, HG1-HG4), подключённых последовательно. HG1-HG4 представляют собой семисегментные индикаторы AЛС324А. Переключатели SB1.2, SB2.2, SB3.2 служат для переключения плавающей точки индикаторов для визуального наблюдения точности результата измерения.

DD9 — DD12 представляют собой десятичные счётчики с выходом на семисегментные индикаторы.. С выходов f/2 счётчиков DD9 — DD12 (К176ИЕ4) снимается старший разряд и передаётся в следующий по порядку счётчик. В соответствии с потребляемым током и входным напряжением светодиодных индикаторов индикаторов, примем сопротивление резисторов R18 — R47 равным 100 Ом.

Рисунок 8 — Устройство индикации

Подключение индикаторов осуществляется через транзисторы КТ312А. Транзисторы работают в ключевом режиме и в соответствии с двоичным кодом счётчиков открываются и передают питание 10В на семисегментные индикаторы индикаторы. Для согласования уровней ТТЛ и КМОП применяется преобразователь уровней.

3.9 Блок питания

Рассчитаем необходимую мощность и ток вторичных обмоток трансформатора для питания цифрового вольтметра:

Исходя из расчётов, возьмём трансформатор ТПП 281-127/220-50 обеспечивающий выходное напряжение на вторичных обмотках 20В и обладающий следующими параметрами:

Таблица 6 — Параметры ТПП 281-127/220-50

Номинал трансформатора

Ном.мощность

Ток первичной обмотки

Напряжение вторичной обмотки, В

Выводы вторичных обмоток

11 -12

13 -14

15 -16

17 -18

19 -20

21 — 22

Ток вторичной обмотки

ТПП 281-127/220-50

72,0

0,72

10,0

10,0

20,0

20,0

2,62

2,62

1,1

Для получения выпрямленного пульсирующего напряжения на входе стабилизаторов применим диодные мосты К142НД1. В качестве стабилизатора используются микросхемы КР142ЕН15А. Параметры микросхемы КР142ЕН15А приведены в таблице 7.

Таблица 7 — Параметры микросхемы КР142ЕН15А

U вых ,В при Uвх =±20В

Максимальное падение напряжения ,В

Нестабильность по напряжению, %/В

I +пот ,мА

I пот ,мА

±(14.5В..15.5)

Ј3

і0.01

Ј5

Ј6

Назначение выводов: 1 — общий; 2 — балансировка U вых ; 3,12 — частотная коррекция; 4 — выход положительный (II); 5 — выход положительный (I); 6,8,13 — свободные; 7 — вход положительный; 8 — вход отрицательный; 10 — выход отрицательный (I); 11 — выход отрицательный (II); 14 — регулировка Uвых .

В микросхеме предусмотрена возможность регулировки выходного напряжения в диапазоне 8..23В при допустимых входных напряжениях, лежащих в диапазоне ±(10..30)В, с помощью резистора R50, R52. Также предусмотрена возможность подстройки фиксированного и регулируемого выходного напряжения в пределах ±1В с помощью резистора R50, R51.

Конденсаторы C2,C4 = C3,C5 і 1мкФ, C6,C8 = C7,C10 і0.01 мкФ, C10,C12=C11,C13і1мкФ. R50,R52 — резистор регулировки выходного напряжения; R49,R52 — резистор балансировки выходного напряжения; R52,R54 = R48,R50 = 33кОм±10%. Таким образом, необходимо предварительно отрегулировать DD6 на выходное напряжение ±15В, а DD7 — на ±10В. На рисунке 11 представлена схема блока питания.

Рисунок 9 — Блок питания

Заключение

В данном курсовом проекте был разработан цифровой вольтметр. В основе работы ЦВ данного типа лежит преобразование типа двойное интегрирование, значение которой измеряется цифровым измерителем и является мерой измеряемого напряжения. Разработанный вольтметр позволяет измерять постоянное напряжение, лежащее в пределах от 0 до 1, от 0 до 10 и от 0 до 100В, и отображать соответствующую информацию на индикаторах. В состав вольтметра также включены защита (и индикация ) от перенапряжения и обратной полярности. В цифровой части вольтметра применены микросхемы на элементной базе ТТЛ. Данная серия микросхем имеет малые энергетические затраты и довольно высокое быстродействие.

Точность измерения — 0.1 , время измерения — 0.1 с. Для повышения надёжности и точности работы устройства была применена 555 серия ТТЛ.

Литература

[Электронный ресурс]//URL: https://drprom.ru/kursovaya/voltmetr-tsifrovoy/

1 Кострома В.С. и др. ”Электронные устройства в железнодорожной автоматике, телемеханике и связи”, Часть 1, Гомель, 1990.

2 Цифровые и аналоговые интегральные микросхемы: Справочник/ С.В. Якубовский и др.; Под редакцией С.В. Якубовского.- М.: Радио и связь, 1990.-496 с.: ил.

3 Полупроводниковые оптоэлектронные приборы: Справочник/В.И. Иванов, А.И. Аксенов, А.М. Юшин; Под редакцией Н.Н. Горюнова.-М.: Энергоатомиздат, 1984.-184 с.: ил.

4 Аналоговые интегральные схемы: Справочник/А.Л. Булычев, В.И. Галкин, В.А. Прохоренко.-2-е изд., перераб. И доп. -Мн.: Беларусь, 1993.-382 с.: черт.

5 Федорко Б.Г., Телец В.А. “Микросхемы ЦАП и АЦП: функционирование, параметры, применение”. М.: ЭНЕРГОАТОМИЗДАТ, 1990.

Приложение