Электрические измерения, измерения электрических величин: электрического напряжения, электрического сопротивления, силы тока, частоты и фазы переменного тока, мощности тока, электрической энергии, электрического заряда, индуктивности, электрической ёмкости и др. Э. и. — один из распространённых видов измерений. Благодаря созданию электротехнических устройств, преобразующих различные неэлектрические величины в электрические, методы и средства Э. и. используются при измерениях практически всех физических величин. Область применения Э. и.: научные исследования в физике, химии, биологии и др.; технологические процессы в энергетике, металлургии, химической промышленности и др.; транспорт; разведка и добыча полезных ископаемых; метеорологические и океанологические работы; медицинская диагностика; изготовление и эксплуатация радио и телевизионных устройств, самолётов и космических аппаратов.
Большое разнообразие электрических величин, широкие диапазоны их значений, требования высокой точности измерений, разнообразие условий и областей применения Э. и. обусловили многообразие методов и средств Э. и. Измерение «активных» электрических величин (силы тока, электрического напряжения и др.), характеризующих энергетическое состояние объекта измерений, основывается на непосредственном воздействии этих величин на средство Э. и. и, как правило, сопровождается потреблением некоторого количества электрической энергии от объекта измерений. Измерение «пассивных» электрических величин (электрического сопротивления, его комплексных составляющих, индуктивности, тангенса угла диэлектрических потерь и др.), характеризующих электрические свойства объекта измерений, требует возбуждения объекта измерений посторонним источником электрической энергии и измерения ответной реакции.
Методы и средства Э. и. в цепях постоянного и переменного тока существенно различаются. В цепях переменного тока они зависят от частоты и характера изменения величин, а также от того, какие характеристики переменных электрических величин (мгновенные, действующие, максимальные, средние) измеряются. Для Э. и. в цепях постоянного тока наиболее широко применяют измерительные магнитоэлектрические приборы и цифровые измерительные устройства. Для Э. и. в цепях переменного тока — электромагнитные приборы, электродинамические приборы, индукционные приборы, электростатические приборы, выпрямительные электроизмерительные приборы, осциллографы, цифровые измерительные приборы. Некоторые из перечисленных приборов применяют для Э. и. как в цепях переменного, так и постоянного тока.
Измерение параметров электрических цепей
... применение. Класс точности этого типа приборов на постоянном токе 2,5; на переменном – 4,0. Универсальные электронные измерительные приборы Универсальные измерительные приборы (универсальные вольтметры) находят широкое применение для измерения электрических величин. Эти приборы позволяют, как правило, измерять ...
Значения измеряемых электрических величин заключаются примерно в пределах: силы тока — от 10-16 до 105 а, напряжения — от 10-9 до 107 в, сопротивления — от 10-8 до 1016 ом, мощности — от 10-16 вт до десятков Гвт, частоты переменного тока — от 10-3 до 1012 гц. Диапазоны измеряемых значений электрических величин имеют непрерывную
Расширение диапазонов измерений электрических величин связано с развитием техники электрических
Пределы допускаемых погрешностей Э. и. колеблются приблизительно от единиц до 10-4%. Для сравнительно грубых измерений пользуются измерительными приборами прямого действия. Для более точных измерений используются методы, реализуемые с помощью мостовых и компенсационных
Применение методов Э. и. для измерения неэлектрических величин основывается либо на известной связи между неэлектрическими и электрическими величинами, либо на применении измерительных преобразователей (датчиков).
Для обеспечения совместной работы датчиков с вторичными измерительными приборами, передачи электрических выходных сигналов датчиков на расстояние, повышения помехоустойчивости передаваемых сигналов применяют разнообразные электрические промежуточные измерительные преобразователи, выполняющие одновременно, как правило, функции усиления (реже, ослабления) электрических сигналов, а также нелинейные преобразования с целью компенсации нелинейности датчиков. На вход промежуточных измерительных преобразователей могут быть поданы любые электрические сигналы (величины), в качестве же выходных сигналов наиболее часто используют электрические унифицированные сигналы постоянного, синусоидального или импульсного тока (напряжения).
Для выходных сигналов переменного тока используется амплитудная, частотная или фазовая модуляция. Всё более широкое распространение в качестве промежуточных измерительных преобразователей получают цифровые преобразователи.
Комплексная автоматизация научных
Методы электрических измерений
... при одинаковых показаниях прибора. Примером применения метода замещения может быть измерение сравнительно большого электрического сопротивления на постоянном токе путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при ...
Современное развитие Э. и. характеризуется использованием новых физических эффектов: (например, Джозефсона эффекта, Холла эффекта) для создания более чувствительных и высокоточных средств Э. и., внедрением в технику Э. и. достижении электроники, микроминиатюризацией средств Э. и., сопряжением их с вычислительной техникой, автоматизацией процессов Э. и., а также унификацией
Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений — меры, преобразователи, комплексные установки.
Применение
Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.
Классификация
Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:
- амперметры — для измерения силы электрического тока;
- вольтметры — для измерения электрического напряжения;
- омметры — для измерения электрического сопротивления;
мультиметры (иначе тестеры, авометры) — комбинированные приборы
частотомеры — для измерения частоты
магазины сопротивлений — для
- ваттметры и варметры — для измерения мощности электрического тока;
электрические счётчики — для измерения потреблённой электроэнергии
и множество других видов
Кроме этого существуют классификации по другим признакам:
- по назначению — измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;
по способу представления результатов
по методу измерения — приборы
- по способу применения и по конструкции — щитовые (закрепляемые на щите или панели), переносные и стационарные;
по принципу действия:
электромеханические:
- магнитоэлектрические;
- электромагнитные;
- электродинамические;
- электростатические;
- ферродинамические;
- индукционные;
- магнитодинамические;
- электронные;
- термоэлектрические;
- электрохимические.
Обозначения
В зарубежных странах обозначения средств измерений устанавливаются
Методы и средства измерения электрических величин
... прибор, такой вольтметр требует применения внешнего дополнительного источника электрической энергии. 1.3 Измерение мощности в цепях постоянного тока Активная мощность, которая выделяется на участке цепи постоянного тока, может быть оценена в результате измерения количества тепла, выделяемого этим участком цепи. Прямые колориметрические измерения ...
В — приборы вибрационного типа (язычковые)
Д — электродинамические приборы
Е — измерительные преобразователи
И — индукционные приборы
К — многоканальные и комплексные измерительные установки и системы
Л — логометры
М — магнитоэлектрические приборы
Н — самопишущие приборы
П — вспомогательные измерительные устройства
Р — меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей
С — электростатические приборы
Т — термоэлектрические приборы
У — измерительные установки
Ф — электронные приборы
Литература
[Электронный ресурс]//URL: https://drprom.ru/referat/elektricheskie-izmereniya/
Б.И.Панев Электрические
Электрические измерения.Средства и методы измерений (общий курс).Под ред. Е. Г. Шрамкова — М.:Высшая школа, 1972