Алкены, или олефины (от лат. olefiant — масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужилхлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.
непредельными
Алкены образуют гомологический ряд с общей формулой CnH 2 n.
1. Строение алкенов
Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С 2 Н4 . Строение его молекула можно выразить такими формулами:
H H H H
| | : :
C==C C :: C
| | : :
H H H H
этиленовыми.
В этиленовых углеводородах (алкенах) атомы углерода находятся во втором валентном состоянии ( sр 2 -гибридизапия).
Напомним, что в этом случае между углеродными атомами возникает двойная связь, состоящая из одной s- и одной p-связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль. Разница в энергиях s- и p-связей (610 — 350 = 260) является приблизительной мерой, характеризующей прочность p-связи. Будучи более слабой, она в первую очередь подвергается разрушительному действию химического реагента.
2. Номенклатура и изомерия
- илен: этан — этилен,
По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.).
Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:
СH 3
|
H 3 C—CH2 —C—CH==CH2 H3 C—C==CH—CH—CH2 —CH3
| | |
CH 3 CH3 CH3
3,3-диметилпентен-1 2,4-диметилгексен-2
Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:
Н 3 С—СН==СН—CH2 —СН3
метилэтилэтилен
Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:
Трехфазные цепи переменного тока
... Мощность в трехфазных цепях Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками. Активная мощность трехфазной цепи равна сумме активных мощностей фаз (6.5) Формула (6.5) используется для расчета активной мощности в трехфазной цепи ... два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а ...
Н 2 С==СН— — винил (этенил)
Н 2 С==CН—СН2 — аллил (пропенил-2 )
Изомерия .
Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.
Первые два члена гомологического ряда алкенов — этилен и пропиле) — изомеров не имеют и их строение можно выразить так:
H 2 C==CH2 H2 C==CH—CH3
этилен пропилен
(этен) (пропен)
Для углеводорода С 4 H8 возможны три изомера:
CH 3
|
H 2 C==CH—CH2 —CH3 H3 C—CH==CH—CH3 H2 C==C—CH3
бутен-1 бутен-2 2-метилпропен-1
Первые два отличаются между собой положением двойной связи углеродной цепи, а третий — характером цепи (изостроение).
Однако в ряду этиленовых углеводородов помимо структурно изомерии возможен еще один вид изомерии — цис-, транс -изомерия (геометрическая изомерия). Такая изомерия характерна для соединений с двойной связью. Если простая s-связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс-) изомеров.
Геометрическая изомерия — один из видов пространственной изомерии.
Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис- изомерами, а по разную — транс -изомерами:
H H H CH 3
| | | |
C==C C==C
| | | |
H 3 C CH3 H3 C H
цис-бутен-2 транс -бутен-2
Цис- и транс -изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс -изомеры более устойчивы, чем цис -изомеры.
3. Получение алкенов
В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля. В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr 2 О3 ).
Например:
® H 2 C==CH—CH2 —CH3
H 3 C—CH2 —CH2 —CH3 ® -H2 бутен-1
бутан ® H 3 C—CH==CH—CH3
бутен-2
Из лабораторных способов получения можно отметить следующие:
1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:
H 2 C—CH2 ® H2 C==CH2 + KCl + H2 O
| |
Cl H K—OH |
2. Гидрирование ацетилена в присутствии катализатора (Pd):
H—CººC—H + H 2 ® H2 C==CH2
3. Дегидратация спиртов (отщепление воды).
В качестве катализатора используют кислоты (серную или фосфорную) или А1 2 O3 :
Н 2 С—СН2 ® Н2 С==СН2 + Н2 О
| |
H OH |
этиловый
спирт
В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):
H OH |
| |
H 3 C—C—CH—CH3 ® H3 C—C==CH—CH3 + H2 O
| |
CH 3 CH3
3-метилбутанол-2 2-метилбутен-2
4. Физические и химические свойства :
Физические свойства. Физические свойства некоторых алкенов показаны в табл. 1. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) — газы, начиная с C 5 H10 (амилен, или пентен-1) — жидкости, а с С18 Н36 — твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис -изомеров выше, чем транс -изомеров, а температуры плавления — наоборот.
Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо — в органических растворителях. Этилен и пропилен горят коптящим пламенем.
Таблица 1. Физические свойства некоторых алкенов
Название | Формула | t пл ,°С | t кип ,°С | d 20 4 |
Этилен (этен) | С 2 Н4 | -169,1 | -103,7 | 0,5700 |
Пропилен (пропен) | С 3 Н6 | -187,6 | -47,7 | 0,5193* |
Бутилен (бутен-1) | C 4 H8 | -185,3 | -6,3 | 0,5951 |
Цис-бутен-2 | С 4 Н8 | -138,9 | 3,7 | 0,6213 |
Транс-бутен-2 | С 4 Н8 | -105,5 | 0,9 | 0,6042 |
Изобутилен (2-метилпропен) | С 4 Н8 | -140,4 | -7,0 | 0,5942* |
Амилен (пентен-1) | C 5 H10 | -165,2 | +30,1 | 0,6405 |
Гексилен (гексен-1) | С 6 Н12 | -139,8 | 63,5 | 0,6730 |
Гептилен (гептен-1) | C 7 H14 | -119 | 93,6 | 0,6970 |
Октилен (октен-1) | C 8 H16 | -101,7 | 121,3 | 0,7140 |
Нонилен (нонен-1) | C 9 H18 | -81,4 | 146,8 | 0,7290 |
Децилен (децен-1) | С 10 Н20 | -66,3 | 170,6 | 0,7410 |
* Жидкий
Алкены малополярны, но легко поляризуются.
Химические свойства.
Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью. p-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:
\ p / \ /
C==C + A—B ® C—C
/ s \ / | s | \
А В
Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением s-связи).
Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.
Реакции присоединения., Гидрирование (присоединение водорода).
Н 2 С==СН2 + H2 ® Н3 С—СН3
этилен этан
Галогенирование (присоединение галогенов).
Н 2 С==СН2 + Cl2 ® ClH2 C—CH2 Cl
1,2-дихлорэтан
Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.
Сравните: у алкенов реакция галогенирования — процесс присоединения, а не замещения (как у алканов).
Реакцию галогенирования обычно проводят в растворителе при обычной температуре.
Электрофильное присоединение галогенов к алкенам можно представить следующим образом. Вначале под влиянием p-электронов алкена происходит поляризация молекулы галогена с образованием переходной неустойчивой системы (p-комплекс):
H 2 C=¯=CH2
Br d+ ® Brd-
p-комплекс
Стрелка, пересекающая двойную связь, обозначает взаимодействие p-электронной системы алкена с молекулой брома («перекачка» p-электронной плотности на Br d+ ).
В данном случае двойная связь, имеющая высокую электронную плотность, выступает в качестве донора электронов. Затем p-комплекс разрушается: двойная связь и связь между атомами брома гетеролитически разрываются с образованием двух ионов брома — аниона и катиона. Катион за счет электронов p-связи образует с углеродом обычную s-связь С—Br. Так возникает другая неустойчивая система — карбкатион (s-комплекс):
H 2 C=|=CH2 ® H2 C –CH2 + + Br— ® H2 C—CH2
¯ | ¬— ¯ | |
Br d + ® Brd — Br Br Br
карбкатион 1,2-дибром-
(s-комплекс) этан
Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.
Присоединение брома к алкенам (реакция бромирования) — качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных — сохраняется).
Гидрогалогенирование (присоединение галогеноводородов).
H 2 С==СН2 + НВr ® Н3 С—CH2 Вr
Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837—1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген — к менее гидрогенизированному:
¯ —————————— |
Н 2 С=СН—СН3 + Н—Вr ® Н3 С—СН—СН3
———————— | |
Br
2-бромпропан
Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием могильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).
Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома — к углероду с частичным положительным зарядом.
Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода. Поэтому в метильной группе наблюдается некоторая поляризация s-связей С—Н , связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О2 (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.
По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводоро-дов, но и других электрофильных реагентов (H 2 O, H2 SО4 , НОС1, IC1 и др.).
При этом катионные и анионные части таких реагентов будут следующими:
Катион….. Н H Н Н Н С1 I
Анион …… С1 Br I SO 4 H ОН ОН С1
Как известно, катионная часть реагента при присоединении идет к наиболее гидронизированному углеродному атому, а анионная часть — к менее гидронизированному.
Гидратация (присоединение воды).
H 3 C—CH==CH2 + H—OH ® H3 C—CH—CH3
|
OH
пропилен изопропиловый
спирт
Реакции окисления., Окисление при обычной температуре.
3H 2 C==CH2 + 2KMnO4 + 4H2 O ® 3HOCH2 —CH2 OH + 2MnO2 + KOH
этиленгликоль
Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.
В более жестких условиях (окисление КМnO 4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:
H 3 C—CH=| =CH—CH3 + 2O2 ® 2H3 C—COOH
уксусная кислота
При окислении этилена кислородом воздуха в присутствии металлического серебра образуется оксид этилена:
350°C
2Н 2 С==СН2 + O2 ® 2Н2 С——СН2
Ag \ O /
оксид этилена
Горение алкенов.
Н 2 С=СН2 + 3O2 ® 2СO2 + 2Н2 O
Реакция изомеризации., Реакции полимеризации.
5. Отдельные представители, Этилен (этен), Пропилен (пропен), Бутилены (бутен-1 и бутен-2), изобутилен (3-метилпропен-1)
Следует отметить, что алкены широко используются в качестве мономеров для получения многих высокомолекулярных соединений (полимеров).