Гидроэнергетика в Беларуси

Энергетика делится на традиционную и нетрадиционную. Традиционная энергетика базируется на использовании ископаемого горючего или ядерного топлива и энергии воды крупных рек. Она подразделяется на теплоэнергетику, электроэнергетику, ядерную энергетику и гидроэнергетику.

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода — ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Изобретение паровой машины, казалось бы, остановило многовековое триумфальное шествие водяных колес. Маленькие пыхтящие двигатели, которые можно было устанавливать где угодно, а не только на берегу реки, приводили в движение станки и кузнечные молоты и сукновальни, покусились даже на извечное предназначение водяных колёс — на орошение полей. Одно за другим шли на слом гигантские водяные колёса, казалось, многовековая история водяной энергетики близится к завершению.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье — в виде водяной турбины. Электрические генераторы, производящие энергию необходимо было вращать, а это вполне успешно могла делать вода.

1. Немного об истории

Гидроэнергия, равно как и мускульная энергия людей и животных, а также солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится к концу II в. до н.э. С течением столетий размеры и эффективность водяных колёс увеличились. В XI в. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение — гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство было единодушно признано невозможным).

27 стр., 13415 слов

Использование энергии ветра

... реферата является донесение информации о ветроэнергетике: её истории, достоинствах и недостатках, перспективах использования в мире и нашей стране, а также о различных ветроустановках. энергия ветер мельница экономика История использования энергии ветра ... с высокой энергией ветра являются побережье морей и океанов, прибрежные (шельфовые) воды, предгорья, тропическая зона с устойчивыми ветрами, ...

Всего за несколько лет до этого события виднейший английский инженер и физик Осборн Рейнольдс в своих Канторовских лекциях неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1,4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%. Опираясь на данные опытов, он сделал вывод о том, что при использовании электрического тока на другом конце линии передачи вряд ли удастся иметь более 15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене.

Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны — постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как ГЭС Гувер в США мощностью 1,3 Гигаватт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов.

В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.

2. Гидроэнергетика в Беларуси

В Беларуси мест для строительства столь крупных гидроэлектростанций нет. Все наши большие реки Днепр, Припять, Двина, Неман — текут на равнинах. Тем не менее еще в советские времена, когда цены на углеродное топливо были на порядки ниже нынешних, ГЭС в БССР строили. Следовательно, определенный экономический потенциал у белорусской гидроэнергетики есть. Тем более что при постоянном подорожании природного газа любое замещение топливных носителей — несомненное благо.

12 стр., 5953 слов

Электроэнергетика Беларуси

... ГРЭС), производящие электрическую энергию. Кроме тепловых электростанций в энергосистеме работают 25 малых гидроэлектростанций общей установленной мощностью ... КПТ) доля местных его видов — 21,8%. Беларусь не располагает значительной собственной топливно-сырьевой базой, ... общем объеме потребленных топливно-энергетических ресурсов (около 14,5-17%). Значительное изменение претерпела структура ...

Сейчас для ввода мощности 1 кВт на газе нужно затратить 1 условную денежную единицу, а тот же киловатт в виде гидроэлектростанции будет стоить в два раза дороже — до 2,1 условной денежной единицы. Получается, вроде как невыгодно. Но ведь и сам газ уже сегодня стоит около 55 долларов, и, как показывает практика цена на него останавливаться не собирается. Поэтому ГЭС с точки зрения энергетической безопасности страны, несомненно, выгодны.

На начало 2004 года установленная мощность 21 ГЭС, входящих в концерн «Белэнерго», составила 10,9 МВт, а их годовая выработка электроэнергии — около 29 млн. кВт, ч, что позволяет заместить около 8 тыс. тонн условного топлива. В то же время потенциальная мощность всех водотоков Беларуси составляет 850 МВт, в том числе технически доступная — 520 МВт, а экономически целесообразная — 250 МВт.

Согласно Концепции энергетической безопасности Республики Беларусь, к 2020 году за счет гидроресурсов можно получить до 0,8-0,9 млрд. кВт, ч В год и, соответственно, заместить 220-250 тыс. тонн условного топлива. Однако, чтобы реализовать такие грандиозные планы, сделать предстоит немало. Это и возведение каскадов ГЭС на основных водных артериях, и строительство новых мини-ГЭС на малых реках, а также восстановление заброшенных мини-станций с частичной заменой их оборудования.

К слову, мини-ГЭС способны решить множество локальных проблем, что они доказали еще в советские времена. Например, только в Гродненской области их было 29 (а всего по стране около 180).

Однако во времена развития крупной энергетики в бывшем СССР (60-е годы) мини-ГЭС в условиях Беларуси были признаны низкоэффективными и их стали повсеместно закрывать. В последние годы идет активное восстановление таких электростанций. На той же Гродненщине, например, в 2005 году начала работать мини-ГЭС «Немново» на Августовском канале. Мощность станции — 250 кВт, и этого достаточно, чтобы обеспечить светлом и теплом местный поселок Сапоцкино. Окупится установка уже через 11 лет, а служить будет как минимум целый век. А всего до 2010 года в Беларуси будет насчитываться около 30 мини-ГЭС.

Интерес к мини-ГЭС проявляют и ученые. Специалисты Института энергетики АПК Национальной академии наук разработали эффективный электрогенератор для таких станций мощностью 15 кВт. Генератор изготовлен с использованием широкодоступных магнитов, производимых в республике. Испытания экспериментального образца генератора выявили его способность в 1,5 раза повысить надежность мини-ГЭС, при этом КПД новой разработки на 10-15% выше аналогов. Столь высокие показатели эффективности и надежности данного агрегата достигнуты за счет замены редуктора в конструкции на постоянные магниты.

По мнению главного специалиста концерна «Белэнерго» Владимира Кордуба, вполне вероятно, что на равнинную белорусскую землю придет и крупная гидроэнергетика. В обозримом будущем, например, возможно строительство Гродненской и Полоцкой ГЭС. Более того, на Западной Двине прорабатывается строительство целого каскада гидроэлектростанций (Витебской, Полоцкой, Бешенковичской и Верхнедвинской) общей мощностью около 130 МВт.

Уже сейчас обсуждаются различные варианты строительства больших ГЭС. В частности, согласно одному из проектов, Неманская ГЭС в Гродно сможет вырабатывать 81,2 млн. кВт·ч электроэнергии (мощность 17 МВт), что составляет примерно 15% всей энергии, которую потребляет Гродненская область. А водохранилище при станции позволит увеличить запасы рыбы и объемы пресной воды.

9 стр., 4248 слов

«Экология» НЕТРАДИЦИОННЫЕ (АЛЬТЕРНАТИВНЫЕ) ИСТОЧНИКИ ЭНЕРГИИ ...

... расходуемая всеми странами энергия составляет 0,1% в отношении возможных для использования запасов угля, природного газа и нефти, вместе взятых. Но ведь потребление всех видов энергетических ресурсов быстро раст ... Дальше все происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар крутит турбину, турбина передает вращение на ротор генератора, а тот вырабатывает ...

Однако окончательное решение о строительстве этой и других станций пока не принято.

3. Основные схемы использования водной энергии

Имеются три основные схемы создания сосредоточенного напора ГЭС:

1. плотинная схема, когда напор создается платиной;

2. деривационная схема, когда напор создается посредствам деривации, осуществляемой виде канала, туннеля или трубопровода;

3. плотинно-деревационная схема, когда напор создается и плотиной, и деривацией Плотины имеются во всех трех схемах.

Плотинная схема осуществляется преимущественно при больших расходах воды в реке и малых уклонах ее свободной поверхности.

В плотинной схеме в зависимости от напора ГЭС может быть русловой или приплотинной.

Русловой называется такая ГЭС, у которой здание ГЭС наряду с платиной входит в состав сооружений, создающих напор Русловая ГЭС может быть построена при сравнительно небольшом напоре.

При средних и больших напорах, превышающих диаметр турбины более чем в 4-5 раз, здание ГЭС не может входить в состав напорного фронта. В таких случаях строят приплотинную ГЭС, здание которой располагается за плотиной и не воспринимает полного давления воды.

При деривационной схеме высота плотины может быть не большой. На рис. Приведена схема ГЭС с деривацией в виде открытого канала. Плотина создает небольшой подпор. Из подпертого бьефа вода по деривационному каналу поступает в напорный бассейн, откуда она подается по трубопроводам к турбинам ГЭС. От турбин вода по отводящему каналу направляется в реку или в деривацию следующей ГЭС или же в ирригационный оросительный канал.

При пересеченном или горном рельефе местности, деривацию можно выполнить в виде туннеля, прорезывающего горный массив или в виде трубопровода, уложенного по поверхности земли.

В плотинно-деривационной схеме используются выгодные свойства обеих предыдущих схем, т.е. может быть создано водохранилище и использовано падение реки ниже платины.

4. Описание работы ГЭС

Источником гидроэнергии является преобразованная энергия Солнца в виде запасенной потенциальной энергии воды, которая затем преобразуется в механическую работу и электроэнергию. Действительно под воздействием солнечного излучения вода испаряется с поверхности озер, рек, морей и океанов. Пар поднимается в верхние слои атмосферы, образуя облака; затем он, конденсируясь, выпадает в виде дождя, пополняя запасы воды в водоемах.

Преобразование потенциальной энергии воды в электрическую происходит на гидроэлектростанции (рис. 1).

Поддержание постоянного напора осуществляется с помощью платины, которая образует водохранилище, Служащее аккумулятором гидроэнергии. В связи с этим при строительстве ГЭС предъявляются определенные требования к рельефу местности, который должен позволить организовать водохранилище и создать требуемый напор за счет плотины. Все это связано со значительными затратами, и стоимость строительных работ может превышать стоимость оборудования ГЭС. Вместе с тем удельная стоимость электроэнергии, генерируемой ГЭС, является самой низкой по сравнению с себестоимостью энергии, производимой другими источниками. Как правило, срок окупаемости малых ГЭС не превышает 10 лет.

16 стр., 7909 слов

Влияние нефтяных загрязнений на окружающую среду

... следующих вопросов: загрязнения окружающей среды разливами нефти; ответственность за разливы нефти; влияние нефтяных загрязнений на окружающую среду; влияние нефти на животных и растения; влияние нефти на ... нефтепродуктов растворяются в воде. Этот «атмосферный» процесс способствует тому, что оставшаяся нефть становится более плотной и неспособной плыть по поверхности воды. Нефть под влиянием ...

Для преобразования энергии воды в механическую работу используются гидротурбины.

Различают активные и реактивные турбины.

В активной турбине кинетическая энергия потока преобразуется в механическую. Дополнительные устройства, обеспечивающие работу турбины, — водовод и сопло. Из сопла выходит струя, обладающая кинетической энергией, которая направляется на лопасти турбины, находящейся в воздухе. Сила, действующая со стороны струи на лопасти, приводит во вращение колесо турбины, с валом которого непосредственно или через привод сопряжен электрогенератор. КПД реальных турбин колеблется от 50 до 90%. В гидротурбинах малой мощности КПД ниже. Максимальное значение КПД, равно 100%. Оно может быть достигнуто, если струя после взаимодействия с лопатками будет двигаться вертикально вниз только под действием силы тяжести. КПД активной гидротурбины может быть повышен за счет ограниченного увеличения числа сопел, так как при большом их количестве будет сказываться взаимное влияние струй.

В реактивной гидротурбине рабочее колесо полностью погружено в поток, который постоянно воздействует на лопасти турбины. В наиболее распространенной турбине Френсиса вращение колеса осуществляется за счет разности давления потока на входе и на выходе вода поступает в рабочее колесо радиально. Зазор между рабочим колесом и камерой — переменный. После взаимодействия потока с колесом он разворачивается на 90°. Переменный зазор и поворот потока повышает эффективность турбины. Имеются и другие конструктивные решения реактивных гидротурбин, например пропеллерная турбина Каплана. Однако этот тип турбин распространен в меньшей степени из-за перепада давления.

ГЭС бывают самых различных мощностей — от 3 кВт до 12 ГВт. Малыми ГЭС (именуемыми также микро-ГЭС и сельские ГЭС) называются ГЭС установленной мощностью менее 500 кВт. Сооружение их осуществляется обычно в качестве составной части комплекса, предусматривающего также развитие сельскохозяйственного производства, водоснабжение и регулирование стока.

5. Влияние гидроэнергетических объектов на окружающую среду и охрана природы

Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе. При рассмотрении влияния гидроэнергетических объектов на окружающую среду необходимо различать период строительства гидроэнергетических объектов и период их эксплуатации.

7 стр., 3084 слов

Влияние промышленности на окружающую среду

... вода не возвращается в водные объекты, а полностью потребляется в процессе производства. Структурная схема воздействия промышленности и транспорта на окружающую природную среду приведена на рисунке: Рис. 1. Взаимодействие промышленности и транспорта с окружающей средой ...

Первый период сравнительно кратковременный — несколько лет. В это время в районе строительства нарушается естественный ландшафт. В связи с прокладкой дорог, постройкой промышленной базы и посёлка резко повышается уровень шума. Вода, используемая для разнообразных строительных работ, возвращается в реку с механическими примесями — частицами песка, глины и т.п. Возможно загрязнение воды коммунально-бытовыми стоками строительного посёлка. Подъём уровня воды в верхнем бьефе начинается обычно в период строительства. В результате производного при этом наполнении водохранилища изменяются расходы и уровни воды в нижнем бьефе.

В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:

1. Затопление в верхнем бьефе

2. Подтопление.

3. Переработка берегов

4. Качество воды

5. Влияние водохранилищ на микроклимат

6. Влияние водохранилищ на фауну

Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т.п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли.

Разрушения ГЭС при военных действиях приведёт к спуску воды водохранилища, возникновению волны высотой десятки метров, которая может уничтожить города, расположенные ниже ГЭС. Строительство ГЭС приводит к наведённой сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.

Мероприятия по охране природы Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе. При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т.п. К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории. По водохранилищу наиболее эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы. Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут быть использованы для рыбного хозяйства, как нерестилище и кормовая база.

Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и коммунально-бытовые постройки, памятники старины выносятся из зоны затопления.

Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения.

В случаях необходимости организуются заповедники, заказники, отлов и перемещение животных, производятся лесопосадки. В целях рыборазведения создают искусственные нерестилища, нерестно-выростные хозяйства, строятся рыбопропускные сооружения для прохода рыбы на нерест из нижнего бьефа в верхний. Большие работы по инженерной защите проводятся в нижнем бьефе.

14 стр., 6889 слов

«Состав водопроводной воды и её влияние на здоровье человека»

... 82%) чаще всего используют в качестве питьевой водопроводную воду*. Водопроводную кипяченую воду пьют 35% опрошенных; обычную воду из-под крана - 32%; водопроводную воду, очищенную бытовым фильтром -15%. Немногим более десятой ... для очистки при заборе воды из открытых водоемов — рек, озер и водохранилищ. На всем пространстве постсоветских стран нельзя употреблять воду из водопровода. Если вы ...

гидроэлектростанция вода водохранилище энергия

Литература

[Электронный ресурс]//URL: https://drprom.ru/referat/gidroelektrostantsii-v-belarusi/

1. Володин В.В., Хазановский П.М. «Энергия, век двадцать первый: Научно-художественная литература». — М.: Дет. лит., 1989 г.

2. Андрижиевский А.А., Володин В.И. «Энергосбережение и энергетический менеджмент». — Мн: «Вышейшая школа» 2005 г.

3. Журнал «Экономика Беларуси» — №3 (4)/2005 г.

4. Щавелев Ю.С. И др. — 2-е изд. — Л.: Энергоиздат, 1981 г.

5. Р. Кларк «Более чем достаточно?» — М.: Энергоиздат, 1984 г.