Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Контрольно- измерительные приборы
Предпосылками для развития отрасли, выпускающей контрольно-измерительные приборы (КИП), были некоторые изобретения известных учёных в области измерительных приборов и деятельность ряда предпринимателей по практической реализации данных изобретений, к которым можно отнести следующие исторические факты:
итальянский физик Александро Вольта [1745-1827] в 1800 г. изобрёл т.н. «Вольтов столб» — первый источник постоянного тока и ряд электрических приборов (электрофор, электрометр, электроскоп и др.)
немецкий физик Генрих Рудольф Герц (Херц) [1857-1894] в 1888 г. изобрел т.н. «Вибратор Герца»;
- английский физик Оливер Джозеф Лодж [1851-1940] в конце прошлого века построил индикатор на основе когеррера;
- французский инженер и предприниматель Э. Дюкрете [1844-1915] на рубеже веков был владельцем в Париже одной из крупнейших в то время в мире мастерской по изготовлению научных приборов.
По существу, первый контрольно-измерительный прибор был прилюдно продемонстрирован в 1897 г. в Страссбургском университете Карлом Фердинандом Брауном — на экране ЭЛТ демонстрировались изменяющиеся во времени процессы.
После того, как данный генератор ими был продемонстрирован в том же году на конференции Западного побережья, организованной Институтом радиоинженеров (ИРИ), эти два конструктора получили письмо из студии Уолта Диснея, с предложением создать генератор, перекрывающий несколько другой диапазон частот. Диснею это нужно было для его музыкальной экстравагантной мультипликации под названием «Фантазия», при этом предусматривался новый метод записи звука на плёнке с целью получения стереофонического звучания. Метод предусматривал использование трёх звуковых дорожек со сжатием амплитуды, для того чтобы они уместились на плёнке, и четвёртой дорожки для декомпрессии.
1. Генераторы:
- генератор высокой частоты типа ГС-3: 0,075 — 20 МГц;
- генератор-стандарт сигналов типа ГСС-1 (-2, -3): 0,1 — 20 МГц;
- генератор ультравысоких частот ГСУ-4: 18 — 100 МГц;
- звуковой генератор типа ГС-5 (для военной техники — ИРПА): 0,05 — 10 кГц (1,5 Вт);
- звуковой генератор типа ЗГ-2: до 20 кГц (1,8 Вт).
4 стр., 1787 слов
Типы приборов для сварки электрическим током
... выпрямителей. Для получения нужной характеристики эти устройства часто оснащают дополнительным дросселем. Дуга в таких аппаратах очень стабильная, не прерывающаяся. Это позволяет производить качественную сварку, ... также мощный генератор со своими электронными системами и приборами контроля. Суть его работы проста. Механическая энергия вращения коленчатого вала двигателя преобразуется генератором в ...
2. Измерители и индикаторы :
- вольтамперметр типа АВО-2: 0,2 — 1000 В, 0,2 мА — 1 А, до 500 кОм;
- —
вольтмиллиамперметр типа 5МП: 30 — 300 мА, 3 — 30 В;
- катодный вольтметр типа ВКС-7: переменные напряжения в диапазоне частот 30 Гц — 100 МГц, пять пределов измерений (1,5, 5, 15, 50, 150 В), входное сопротивление не менее 4 МОм, входная емкость 7 пФ;
- карманный омметр типа ОК-1 (МОК-2): до 20 кОм (по постоянному току); —
измеритель выхода приёмников типа ИВ-3: 0,5 — 300 В;
- измеритель ёмкости типа ГБЕ-2: 2 — 2000 пФ (на частоте 500 кГц);
- измеритель модуляции типа ИМ-6: 10 — 100 % (до 30 МГц);
- измеритель нелинейных искажений типа КМ-4: 0,5 — 50 % (0,1 — 6 кГц);
- измеритель частоты типа ИЧ-1: 0,01 — 10 кГц (0,5 В);
3. Калибраторы, гетеродинные волномеры :
- гетеродинный волномер типа ПГВ-1 (ПГВ-2): 1 — 20 МГц (опорные точки с дискретностью через 100 кГц);
- гетеродинный волномер типа 2ГВД: 1,3 — 30 МГц;
- гетеродинный волномер типа 2ГВК: 71,5 — 1120 кГц;
- кварцевый калибратор (опорный гетеродин) типа А-1 [мод.
1941 г.]: 1, 2, 2,5, 3 — 6 МГц (через 1 МГц), 17,5 — 42,5 МГц (через 2,5 МГц);
- кварцевый калибратор типа КК-1 (КК-2, КК-3): 0,1-10 МГц (с кратностью 100 кГц), 10 — 20 МГц (с кратностью 1 МГц).
4. Испытатель ламп типа ИЛ-8 (для военной техники — ИПР-3): проверка параметров основных типов приёмных и мелких генераторных ламп путём измерения токов в отдельных цепях.
Вольтметр
Вольтметр (вольт + гр. ?????? измеряю) — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.
Классификация:
По принципу действия вольтметры разделяются на:
- электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
электронные — аналоговые и цифровые
По назначению:
- постоянного тока;
- переменного тока;
- импульсные;
- фазочувствительные;
- селективные;
универсальные
По конструкции и способу применения:
- щитовые;
- переносные;
стационарные
Видовые наименования
Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
Векторметр — фазочувствительный вольтметр
Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
Методика поверки цифрового вольтметра переменного тока
... осуществления поверки средств измерений, применяемых вне сферы законодательной метрологии, устанавливается при утверждении типа средства измерений. Цифровой вольтметр - это электронный вольтметр, применяемый для измерения напряжения с преобразованием тока в цифровой код. Цифровые вольтметры подразделяются на вольтметры переменного тока, вольтметры постоянного тока, универсальные вольтметры, ...
Дxx — электродинамические вольтметры
Мxx — магнитоэлектрические вольтметры
Сxx — электростатические вольтметры
Тxx — термоэлектрические вольтметры
Фxx, Щxx — электронные вольтметры
Цxx — вольтметры выпрямительного типа
Эxx — электромагнитные вольтметры
Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
В2-xx — вольтметры постоянного тока
В3-xx — вольтметры переменного тока
В4-xx — вольтметры импульсного тока
В5-xx — вольтметры фазочувствительные
В6-xx — вольтметры селективные
В7-xx — вольтметры универсальные
Видовые наименования
Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
Векторметр — фазочувствительный вольтметр
Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
Дxx — электродинамические вольтметры
Мxx — магнитоэлектрические вольтметры
Сxx — электростатические вольтметры
Тxx — термоэлектрические вольтметры
Фxx, Щxx — электронные вольтметры
Цxx — вольтметры выпрямительного типа
Эxx — электромагнитные вольтметры
Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
В2-xx — вольтметры постоянного тока
В3-xx — вольтметры переменного тока
В4-xx — вольтметры импульсного тока
В5-xx — вольтметры фазочувствительные
В6-xx — вольтметры селективные
В7-xx — вольтметры универсальные
Осциллограф
Первый осциллограф был изобретён французским физиком Андре Блонделем в 1893 году.
Осцилло?граф (лат. oscillo — качаюсь + гр. ????? — пишу) — прибор, предназначенный для исследования электрических сигналов во временно?й области путём визуального наблюдения графика сигнала на экране либо записанного на фотоленте, а также для измерения амплитудных и временны?х параметров сигнала по форме графика. Современные осциллографы позволяют разворачивать сигнал гигагерцовых частот. Для разворачивания более высокочастотных сигналов можно использовать стрик-камеры.
Общее описание
На рисунке показана передняя панель типичного двухлучевого осциллографа.
Органы управления и индикации
Экран
Электронно-лучевой осциллограф имеет экран A, на котором отображаются графики входных сигналов. На экран нанесена разметка в виде сетки. У цифровых осциллографов изображение выводится на дисплей (монохромный или цветной) в виде готовой картинки. У аналоговых осциллографов в качестве экрана используется электронно-лучевая трубка с электростатическим отклонением.
Погрешности измерений электроэнергии
... трубки. Производство измерений осциллографом ЗАДАЧА № 1. ЗАДАЧА № 2. Вопрос 1. Каковы причины возникновения погрешностей при измерениях? Приведите формулы, ... чувствительность и реагирующий на очень маленькие токи. Упрощенная схема компенсатора постоянного тока приведена на рисунке 6. Одним ... вольтметра, работающего в диапазоне измерений 0 — 30 В, класс точности 0,5 определяет, что указанная погрешность ...
Сигнальные входы
Осциллографы разделяются на одноканальные и многоканальные (2, 4, 6, и т.д. каналов на входе).
Многоканальные осциллографы позволяют одновременно сравнивать сигналы между собой (формы, амплитуды, частоты и пр.)
Классификация
По назначению и способу вывода измерительной информации
Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап.-европ. языках oscilloscop(e)
Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовые осциллографы) — в зап.-европ. языках oscillograph
По способу обработки входного сигнала
Аналоговый
Цифровой
По количеству лучей осциллографы делятся на однолучевые, двухлучевые и т.д. Количество лучей может достигать 16-ти и более. N-лучевой осциллограф имеет N сигнальных входов и может одновременно отображать на экране N графиков.
Осциллографы с периодической развёрткой делятся на универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.