Реферат формула тонкой линзы

Реферат

Что такое оптика? Оптика — это раздел физики, который изучает природу света, его свойства, закономерности распространения в различных средах, а также взаимодействие света с веществами. Оптическое излучение представляет собой электромагнитные волны, и поэтому оптика — часть общего учения об электромагнитном поле.

Изучая природу света и закономерности его распространения, человек использует полученные знания себе на пользу.

По традиции оптику принято подразделять на геометрическую, физическую и физиологическую. Геометрическая оптика оставляет вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде.

Физическая оптика рассматривает проблемы, связанные с природой света и световых явлений.

Физиологическая оптика — междисциплинарная наука о зрительном восприятии света. Она объединяет сведения по биофизике, биохимии и психологии зрительного восприятия[2].

Нельзя недооценивать практическое значение оптики, а также ее влияния на иные отрасли знания. Удивительный и богатый мир явлений, что происходят во Вселенной, открылся человеческому взору благодаря изобретению спектроскопа и телескопа. Революцию в биологии произвело изобретение микроскопа. Почти всем отраслям науки помогала и продолжает помогать фотография, также изобретение на основе оптики. Конечно же, в основе большинства научных приборов с оптическим наполнением является линза, без которой не было бы ни телескопа, ни микроскопа, фотоаппарата, очков, телевидения и многого другого[7].

Цель работы: рассмотреть законы оптических явлений.

Задачи:

  • изучить законы геометрической оптики;
  • рассмотреть явления физической оптики;
  • построения изображений в линзах.

Одна из первых теорий света – теория зрительных лучей – была выдвинута греческим философом Платоном около 400 г. до н. э. Данная теория предполагала, что из глаза исходят лучи, которые, встречаясь с предметами, освещают их и создают видимость окружающего мира. Взгляды Платона поддерживали многие ученые древности и, в частности, Евклид (3 в до н. э.), исходя из теории зрительных лучей, основал учение о прямолинейности распространения света, установил закон отражения.

Уже в первые периоды оптических исследований были на опыте установлены следующие четыре основных закона оптических явлений:

7 стр., 3068 слов

Оптические и оптико физические измерения

... так и волновой оптики. В наши дни теория света продолжает развиваться. Волновые свойства света и геометрическая оптика. Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Простейшие оптические явления, например ...

1. Закон прямолинейного распространения света.

2. Закон независимости световых пучков.

3. Закон отражения от зеркальной поверхности.

4. Закон преломления света на границе двух прозрачных сред.

Дальнейшее изучение этих законов показало, во-первых, что они имеют гораздо более глубокий смысл, чем может казаться с первого взгляда, и во-вторых, что их применение ограничено, и они являются лишь приближёнными законами. Установление условий и границ применимости основных оптических законов означало важный прогресс в исследовании природы света.

Сущность этих законов сводится к следующему.

    1. Закон прямолинейного распространения света

В однородной среде свет распространяется по прямым линиям.

Закон этот встречается в сочинениях по оптике, приписываемых Евклиду и, вероятно, был известен и применялся гораздо раньше.

Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Рис. 1 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей[1].

Группа 3

Закон прямолинейного распространения может считаться прочно установленном на опыте. Он имеет весьма глубокий смысл, ибо само понятие о прямой линии, по-видимому возникло из оптических наблюдений. Геометрическое понятие прямой как линии, представляющей кратчайшее расстояние между двумя точками, есть понятие о линии, по которой распространяется свет в однородной среде.

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям.

Так, в опыте, изображенном на рис. 1, мы получим хорошее изображение при размере отверстия около 0,5 мм. При последующем уменьшении отверстия — изображение будет несовершенным, а при отверстии около 0,5-0,1 мкм изображение совсем не получится и экран будет освещён практически равномерно[3].

    1. Закон независимости световых пучков

Световой поток можно разбить на отдельные световые пучки, выделяя их, например, при помощи диафрагм. Действие этих выделенных световых пучков оказывается независимым, т.е. эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно другие пучки или они устранены[5].

    1. Закон отражения света

Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в одной плоскости (рис. 2), причем углы между лучами и нормалью равны между собой: угол падения равен углу отражения. Этот закон также упоминается в сочинениях Евклида. Установление его связано с употреблением полированных металлических поверхностей (зеркал), известных уже в очень отдаленную эпоху[4].

Группа 6

1.4. Закон преломления света

Группа 9 Преломление света – изменение направления распространения оптического излучения (света) при его прохождении через границу раздела однородных изотропных прозрачных (не поглощающих) сред. Преломление света сопровождается также отражением света (рис.3).

4 стр., 1825 слов

Измерение силы света

... два замечательных свойства света - прямолинейность распространения в однородной среде и независимость распространения световых пучков, т.е. отсутствие влияния одного пучка света на распространение другого светового пучка. ... отражает физическое свойство света, благодаря чему он отличается от таких измерений, как яркость, которая отражает субъективные ощущения. Помимо этого сила света в физике ...

Явление преломления света было известно уже Аристотелю. Попытка установить количественный закон принадлежит знаменитому астроному Птолемею (120 г. н.э.), который предпринял измерение углов падения и преломления[6].

Закон отражения и закон преломления также справедливы лишь при соблюдении известных условий. В том случае, когда размер отражающего зеркала или поверхности, разделяющей две среды, мал, мы наблюдаем заметные отступления от указанных выше законов. Однако для обширной области явлений, наблюдаемые в обычных оптических приборах, все перечисленные законы соблюдаются достаточно строго[1].

На базе многочисленных опытных фактов в середине XVII века возникают две гипотезы о природе световых явлений:

  • корпускулярная, предполагавшая, что свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами;
  • волновая, утверждавшая, что свет представляется собой продольные колебательные движения особой светоносной среды – эфира – возбуждаемой колебаниями частиц светящегося тела.

Свет – диалектическое единство противоположных свойств: он одновременно обладает свойствами непрерывных электромагнитных волн и дискретных фотонов.

Свет переносит энергию. При распространении световых волн возникает поток электромагнитной энергии.

Световые волны испускаются в виде отдельных квантов электромагнитного излучения (фотонов) атомами или молекулами[3].

    Интерференция – одно из ярких проявлений волновой природы света. Оно связано с перераспределением световой энергии в пространстве при наложении так называемых когерентных волн, то есть волн, имеющих одинаковые частоты и постоянную разность фаз. Интенсивность света в области перекрытия пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

    Для расчета интерференции используется понятие оптической длины пути. Пусть свет прошел расстояние L в среде с показанием преломления n. Тогда его оптическая длина пути рассчитывается по формуле:

     закон преломления света 2

    Для интерференции необходимо наложение хотя бы двух лучей. Для них вычисляется оптическая разность хода (разность оптических длин) по следующей формуле:

     закон преломления света 3

    Именно эта величина и определяет, что получится при интерференции: минимум или максимум. Запомните следующее: интерференционный максимум (светлая полоса) наблюдается в тех точках пространства, в которых выполняется следующее условие:

     закон преломления света 4

    3 стр., 1050 слов

    Спектральные приборы. Основы оптики. Теория изображения

    ... светом, то и изображение А' за объективом 062(1) представляет собой белую линию. Система «коллиматор — параллельные пучки — объектив» используется во многих оптических приборах, нс только спектральных. Между ... дифракционная решётка или интерферометр Фабри-Перо [14]. С точки зрения геометрической оптики все эти элементы эквивалентны плоскому зеркалу или плоскопараллельной пластинке, поскольку ...

    Разность фаз колебаний при этом составляет:

     закон преломления света 5

    При m = 0 наблюдается максимум нулевого порядка, при m = ±1 максимум первого порядка и так далее. Интерференционный минимум (темная полоса) наблюдается при выполнении следующего условия:

    Разность фаз колебаний при этом составляет:

     закон преломления света 6

    ПГруппа 17 ри первом нечетном числе (единица) будет минимум первого порядка, при втором (тройка) минимум второго порядка и т.д. Минимума нулевого порядка не бывает[6].

      ДГруппа 20 ифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий, размеры которых сопоставимы с длиной волны света (огибание светом препятствий).

      Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени (то есть быть там, где его быть не должно).

      Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос[4].

        Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.

        Линзы бывают собирающими и рассеивающими. Если показатель преломления линзы больше, чем окружающей среды, то собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше. Если показатель преломления линзы меньше, чем окружающей среды, то всё наоборот.

        Прямая, проходящая через центры кривизны сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз можно приближенно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы. Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

        Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, симметрично расположенных относительно линзы на главной оптической оси. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначается той же буквой F [5] .

        Группа 23

        Рисунок 1 Правила построения хода луча в линзах

        4.1. Формула линзы

        11 стр., 5083 слов

        Оптические инструменты, вооружающие глаз

        ... объектов. 1.2. Оптические инструменты. 1.2.1. Лупа Одним из простейших оптических приборов является лупа – собирающая линза, предназначенная для рассматривания увеличенных изображений малых объектов. Линзу подносят к ... + F2 . Зрительная труба (телескоп) принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя. Если ...

        Основное свойство линз – способность давать изображения предметов. Изображение – это точка пространства, где пересекаются лучи (или их продолжения), испущенные источником после преломления в линзе. Изображения бывают прямыми и перевернутыми, действительными (пересекаются сами лучи) и мнимыми (пересекаются продолжения лучей), увеличенными и уменьшенными.

        Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.

        Для простоты можно запомнить, что изображение точки будет точкой. Изображение точки, лежащей на главной оптической оси, лежит на главной оптической оси. Изображение отрезка – отрезок. Если отрезок перпендикулярен главной оптической оси, то его изображение перпендикулярно главной оптической оси. А вот если отрезок наклонен к главной оптической оси под некоторым углом, то его изображение будет наклонено уже под некоторым другим углом.

        Изображения можно также рассчитать с помощью формулы тонкой линзы. Если кратчайшее расстояние от предмета до линзы обозначить через d, а кратчайшее расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

        Рисунок правила построения хода луча в линзах 1

        Величину D, обратную фокусному расстоянию. называют оптической силой линзы. Единица измерения оптической силы является 1 диоптрия (дптр).

        Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м.

        Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0. Оптическая сила рассеивающей линзы также отрицательна.

        Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета и так далее[6].

        Оптика — это раздел физики, изучающий природу светового излучения, его распространение и взаимодействие с веществом. Световые волны — это электромагнитные волны.

        Свет распространяется вдоль линий, называемых лучами. В приближении лучевой (или геометрической) оптики пренебрегают конечностью длин волн света, полагая, что λ→0. Геометрическая оптика во многих случаях позволяет достаточно хорошо рассчитать оптическую систему.

        «Луч» в геометрической оптике — абстрактный геометрический объект, перпендикулярный фронту импульса фактических оптических волн. Геометрическая оптика описывает правила прохождения лучей через оптическую систему.

        Физическая оптика или оптика волны моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу волны. Этот раздел оптики объясняет дифракцию, интерференцию и природу других сложных эффектов.

        Простейшей оптической системой является линза[7].

        15 стр., 7311 слов

        Градиентная оптика

        ... линзы и зеркала со сферическими поверхностями, но для упрощения оптических систем и повышения качества изображений при высокой светосиле используют оптические ... волны, основано на результатах огромного числа экспериментальных исследований дифракции света, интерференции, поляризации света и распространения в анизотропных средах. Одна из важнейших традиционных задач оптики - получение изображений, ...

        1. Арцыбашев С.А. Физика — М.: Медгиз, 1950. — 511с.

        2. Жданов Л.С. Жданов Г.Л. Физика для средних учебных заведений — М.: Наука, 1981. — 560с.

        3. Ландсберг Г.С. Оптика — М.: Наука, 1976. — 928с.

        4. Ландсберг Г.С. Элементарный учебник физики. — М.: Наука, 1986. — Т.3. — 656с.

        5. Прохоров А.М. Большая советская энциклопедия. — М.: Советская энциклопедия, 1974. — Т.18. — 632с.

        6. Сивухин Д.В. Общий курс физики: Оптика — М.: Наука, 1980. — 751с.

        7. Оптика [Электронный ресурс] URL : (дата обращения 13.05.2018)