Оксиды и соли как строительные материалы реферат по химии

Реферат

Современная химия является одной из естественных наук и определяет собой систему отдельных дисциплин: общей и неорганической химии, аналитической химии, органической химии, физической и коллоидной химии, геохимии, космохимии и т. п.

Химия – наука, изучающая процессы превращения веществ, сопровождающиеся изменением состава и структуры, а также взаимные переходы между этими процессами и другими формами движения материи.

Неорганическая химия – это химия элементов Периодической системы и образованных ими простых и сложных веществ.

Неорганическая химия неотделима от общей химии. Исторически при изучении химического взаимодействия элементов друг с другом были сформулированы основные законы химии, общие закономерности протекания химических реакций: теория химической связи, учение о растворах и многое другое, что составляет предмет общей химии. Таким образом, общая химия изучает теоретическое представление и концепции, составляющие фундамент всей системы химических знаний.

Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает своё «второе рождение» в результате широкого привлечения квантово-химических методов, зонной модели энергетического спектра электронов, открытых валентно-химических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она решает главную задачу – создание новых неорганических веществ с заданными свойствами. Из экспериментальных методов химии важнейшим является метод химических реакций. Химические реакции – это превращение одних веществ в другие, путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Кроме того, по химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез.

Таким образом, главным объектом химии являются вещества и их превращения.

Все вещества делятся на простые и сложные. Простые, в свою очередь, подразделяются на металлы и неметаллы.

В твердом состоянии большинство веществ имеют кристаллическое строение. Связь в кристаллической решетке металлов – металлическая. Это обуславливает их особые физические свойства: электропроводность, теплопроводность, пластичность. Атомы неметаллов связаны между собой с помощью неполярной ковалентной связи. Они могут иметь атомную (алмаз, графит, кремний) или молекулярную (белый фарфор, галогены, кристаллическая сера S8) кристаллическую решетки. Поэтому физические свойства неметаллов весьма различны.

3 стр., 1196 слов

Свойства катализатор химическое вещество ускоряющее реакцию но ...

... катализатора Каталитическая активность, активность катализатора, свойство катализатора ускорять химическую реакцию. ... наносят катализатор. При нанесении каталитических веществ на пористый носитель ... каталитический реакция катализатор хинолин Список использованной литературы [Электронный ресурс]//URL: https://drprom.ru/kontrolnaya/smennyie-kataliticheskie-neytralizatoryi/ 1. Вольхин, В.В. Общая химия. ...

Сложные вещества делятся на 4 класса: оксиды, основания, кислоты, соли.

1. Определение оксидов

Окси́д (о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, соединения, содержащие атомы кислорода, связанные химической связью друг с другом ( пероксиды, надпероксиды, озониды) например: пероксид натрия Na2O2 , надпероксид калия KO2 , озонид калия KO3 и соединения фтора с кислородом (OF2 , O2F2), которые следует называть не оксидами фтора, а фторидами кислорода, т. к. степень окисления кислорода в них положительная.

Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, моноокисью или закисью, если два — диоксидом или двуокисью, если три — то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО2, триоксид серы SO3.

Также распространены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO3 и т. д.

2. Классификация оксидов

Несолеобразующие оксиды — оксиды, не проявляющие ни кислотных, ни основных, ни амфотерных свойств и не образующие соли. Раньше такие оксиды называли индифферентными или безразличными, но это неверно, так как по своей химической природе данные оксиды достаточно реакционноспособны. По сравнению с другими видами, количество несолеобразующих оксидов невелико, их как правило образуют одно — и двухвалентные неметаллы. Типичными представителями таких оксидов являются гемиоксид азота (закись азота) N2O, монооксид азота NO, монооксид углерода СО, монооксид кремния SiO.

Солеобразующие оксиды — это оксиды, которые образуют соли при взаимодействии с кислотами или основаниями. В зависимости от характера соответствующих гидратов оксидов все солеобразующие оксиды делятся па три типа: основные, кислотные, амфотерные.

Осно́вные оксиды – солеобразующие оксиды, проявляющие осно́вные свойства. К ним относятся:

  • оксиды металлов главной подгруппы первой группы (щелочные металлы)
  • оксиды металлов главной подгруппы второй группы (щелочноземельные металлы)
  • оксиды переходных металлов в низших степенях окисления

Кислотные оксиды (ангидриды) – оксиды, растворяющиеся только в щелочах, с образованием соли и воды. Образуются типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют валентность от IV до VII. Также они могут взаимодействовать с некоторыми основными оксидами, например: оксид кальция CaO, оксид натрия Na2О и оксид цинка ZnO.

6 стр., 2581 слов

Реферат кислоты основания соли оксиды

... соли. Многие кислородосодержащие кислоты можно получить путем взаимодействия кислотных оксидов с водой: SO + HO = HSO NO + HO = 2HNO 2.1. Химические свойства кислот 1ое свойство: кислоты действуют на ... 2HO = Ca(OH) + H Б) с оксидами активных металлов, образуя растворимые основания – щелочи. CaO + HO = Ca(OH) Оксиды которым соответствуют основания (независимо от того, реагируют они с водой ...

Амфотерные оксиды — солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность).

Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют валентность II,III,IV.

Увеличение степени окисления элемента и уменьшение радиуса его иона (при этом происходит уменьшение эффективного отрицательного заряда на этоме кислорода) делают оксид более кислотным. Это и объясняет закономерное изменение свойств оксидов от основных к амфотерным и далее к кислотным.

1) В одном периоде при увеличении порядкового номера происходит усиление кислотных свойств оксидов и увеличение силы соответствующих им кислот.

2) В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление новых свойств оксидов:

3) При повышении степени окисления элемента усиливаются кислотные свойства оксида и ослабевают основные.

3. Физические и химические свойства

Физические и химические свойства оксидов очень отличаются. При комнатной температуре большинство оксидов являются твердыми веществами, например, меди (II) оксид CuO черного цвета, кальций оксид CaO белого цвета, хром (III) оксид Cr 2 O3 темно-зеленого цвета. Некоторые оксиды являются жидкостями, например, водород оксид (вода) H2 O и Cl2 O7 являются бесцветными жидкостями, а некоторые — газообразными веществами, например карбон (IV) оксид CO2 является газом без цвета, а азот (IV) оксид NO2 являются бурым газом. Некоторые оксиды являются веществами с молекулярным строением, другие имеют ионную строение.

Основные и кислотные оксиды проявляют разные свойства. Основные оксиды при нагревании могут вступать в реакции с кислотными и амфотерными оксидами, с кислотами. С водой непосредственно реагируют оксиды щелочных металлов (оксиды лития, натрия, калия, рубидия и цезия) и окислы щелочноземельных металлов (оксиды кальция, стронция и бария).

Рассмотрим примеры уравнений типовых химических реакций, которые подтверждают указанные свойства основных оксидов.

1. Взаимодействие основного оксида с кислотным оксидом с образованием соли:

CaO+SiO 2 -> CaSiO3

2. Взаимодействие основного оксида с амфотерными оксидом с образованием соли:

Na 2 O+Al2 O3 ->2NaAlO2

3. Взаимодействие основного оксида с водой с образованием основания:

BaO+H 2 O=Ba(OH)2

4. Взаимодействие основного оксида с кислотой с образованием соли и воды:

MgO+2HCl=MgCl 2 +H2 O

Кислотные оксиды могут вступать в реакции с основными и амфотерными оксидами, с растворимыми в воде основаниями (щелочами).

11 стр., 5082 слов

Цели и структура непрерывного образования

... также продолжаться без отрыва от производства. Прерывистость образовательного процесса не противоречит идее непрерывного образования. Непрерывное образование призвано обеспечить гармоничное развитие каждой личности, индивидуализировать обучение, воспитать в каждом человеке ...

Многие кислотных оксидов взаимодействуют с водой (исключением является кремний (IV) оксид SiO 2 . Рассмотрим примеры уравнений типовых химических реакций, которые подтверждают указанные свойства кислотных оксидов.

1. Взаимодействие кислотного оксида с основным оксидом с образованием соли:

CO 2 +Na2 O=Na2 CO3

2. Взаимодействие кислотного оксида с амфотерными оксидом с образованием соли:

SO 3 +ZnO=ZnSO4

3. Взаимодействие кислотного оксида с водой с образованием кислоты:

P 2 O5 +3H2 O=2H3 PO4

4. Взаимодействие кислотного оксида со щелочью с образованием соли и воды:

SO 2 +2KOH=K2 SO3 +H2 O

Амфотерными оксидам присущи свойства как основных, так и кислотных оксидов. То есть они могут реагировать как с кислотными, так и с основными оксидами с образованием солей. Кроме того, амфотерные оксиды могут взаимодействовать как с кислотами, так и со щелочами с образованием солей и воды.

Например:

ZnO+H 2 SO4 =ZnSO4 +H2 O

Al 2 O3 + 2KOH 2KAlO2 + H2 O

4. Способы получения

1. Окисление простых веществ кислородом (сжигание простых веществ):

2Mg + O2 = 2МgО

4Р + 5O2 = 2Р2О5.

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды(Na2O2, K2O2).

Не окисляются кислородом воздуха благородные металлы, напрмер, Аu, Аg, Рt.

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O2 = 2ZnO + 2SO2

2Н2S + 3O2 = 2SO2 + 2Н2О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

Сu(ОН)2 СuО + Н2О

H2SO3 SO2 + H2O

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

СаСО3 СаО + СО2

2Рb(NO3)2 2РbО + 4NO2 + O2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

Заключение

Одной из важнейших таких систем естествознания, на мой взгляд, является химическая наука. Современная химия развивается стремительными темпами, плодотворно сотрудничая с физикой, математикой, биологией и другими науками. Истоки химических знаний лежат в глубокой древности.

В их основе — потребность человека получить необходимые вещества, объяснить взаимодействие веществ для своей жизнедеятельности. Химия очень тесно связана с производством материальных ценностей и является больше практической наукой. Современные достижения химии в ее практической деятельности вносят большой вклад в общее миропонимание, в развитие естественнонаучных знаний, существенно отражаются на состоянии взаимодействия общества с природой. Добавляемые химией и химической производственной практикой знания о природе, о вещах и превращениях веществ, являются основой для формирования мировоззрения человека, развития общих представлений о мире, о природе человека, его деятельности. Еще с древних времен и вплоть до наших дней в развитии научной, в том числе и химической мысли, почти по всем направлениям можно констатировать позитивный и безостановочный прогресс. Научные знания продолжают постоянно углубляться и совершенствоваться.

4 стр., 1950 слов

Химия и повседневная жизнь человека

... много различных веществ, продуктов питания, тканей, которые имеют очень сложный химический состав, и все они тесно связаны с жизнью человека, и его деятельностью. (Источник: Химия и пища: ... желательна очистка сточных вод от ПАВ в отстойниках, а в естественных условиях (в водоемах) их частично «съедают» гетеротрофные бактерии, которые входят в состав активного ила. (Источник: http://school.xvatit.com) ...

Для формирования у современного человека естественнонаучного способа мышления, целостного мировоззрения необходимы и знания основных положений химии, как одной из важнейших наук, ее исторического развития и современного понимания роли химии для жизни и деятельности человека. Роль вещества и знаний о веществе, природа химических знаний, пути и средства их формирования в историческом развитии — вот то, с чего в можно начать изучение влияния химии на формирование и развитие современного естествознания.

Список использованных источников

[Электронный ресурс]//URL: https://drprom.ru/referat/oksidyi-i-soli-kak-stroitelnyie-materialyipo-himii/

1. Кипер Р.А. Свойства веществ: Справочник. — Хабаровск, 2009. — 387 с.

2. Коренев Ю.М., Овчаренко ., В.П., Егоров Е.Н. Общая и неорганическая химия часть 3, М.: Московский университет 2000. — 36с.

3. Третьяков Ю.Д., Неорганическая химия, том 1, М.: Академия, 2004. -240с.

4. Ахметов, Н. С. Общая и неорганическая химия / Н. С. Ахметов. – 5-еизд.,перераб. идоп. – М.: Высш. шк., 2003. – 744 с.

5. Карапетьянц, М. Х. Общая и неорганическая химия: учебник для вузов / М. Х. Карапетьянц, С. И. Дракин. – 4-еизд., стереотип. – М.: Химия, 2000. – 592 с.