Химические и натуральные волокна

Натуральное волокно создает сама природа.

С древнейших времен и до конца XIX века единственным сырьем для производства текстильных материалов служили натуральные волокна, которые получали из различных растений. Сначала это были волокна дикорастущих растений, а затем волокна льна и конопли. С развитием земледелия начали возделывать хлопчатник, дающий очень хорошее и прочное волокно.

Большое распространение получили волокна, вырабатываемые из стеблей растений, их называют лубяными. Волокна из стеблей большей частью грубые, прочные и жесткие — это волокна кенафа, джута, конопли и других растений. Изо льна получают более тонкие волокна, из которых вырабатывают ткани для изготовления одежды и белья.

Так же некоторые высокомолекулярные соединения могут быть использованы для получения химических волокон.

Во всех промышленно развитых странах доля химических волокон в общем объеме производства основных видов текстильного волокна непрерывно увеличивается: в Японии, Италии и ФРГ она составляет около 99%, в Англии 96%, во Франции 85%, в США более 52%. Это кроме вышеперечисленных преимуществ химических волокон по сравнению с натуральными объясняется еще и тем, что натуральные волокна не могут обеспечить нужный рост производства товаров народного потребления, вызываемый увеличением численности населения и расширением его запросов.

1. Химические волокна

Химические волокна делятся на искусственные и синтетические. Искусственные волокна изготовляют из природных высокомолекулярных соединений, в основном из целлюлозы. Синтетические волокна изготовляют из синтетических высокомолекулярных соединений.

Химические волокна имеют ряд серьезных преимуществ перед натуральными.

Во-первых, производство химических волокон требует значительно меньших затрат труда, чем производство натурального волокна. Например, на производство 1 т хлопка-волокна надо затратить 200 человеко-дней, на 1 т мытой шерсти — около 400 человек-дней, а на производство 1 т вискозного штапельного волокна — всего 50 человеко-дней. Это резко сказывается на стоимости готовой продукции.

Во-вторых, производство химических волокон не зависит от природных, географических и климатических условий и может быстро наращивать свои мощности. Типовой завод штапельного волокна выпускает 100 т продукции в сутки. Чтобы получить столько волокна из хлопка, надо собрать урожай с 50 тыс. гектаров. А один завод синтетического волокна дает в год столько шерсти. Сколько можно получить от 15-20 млн. овец.

5 стр., 2027 слов

Технология производства химических волокон

... производство химических волокон требует меньших капиталовложений для выработки единицы продукции, чем производство любого вида природного волокна; б) трудозатраты, требуемые для выработки химических волокон, значительно ниже, чем в производстве любого вида природных волокон; - в) химические волокна ...

В-третьих, уже в настоящее время созданы синтетические волокна, превосходящие по многим свойствам (прочности, эластичности, химической стойкости и др.) натуральные волокна. Так, например, из некоторых синтетических волокон производят немнущуюся одежду, безразмерные чулки и белье, исключительно прочную одежду красивой расцветки и многое другое. Применение корда из химических волокон резко увеличивает срок службы автомобильных покрышек. Синтетические волокна не подвержены гниению, поэтому они служат незаменимым материалом для производства рыболовных сетей, канатов и др.

Химические волокна изготовляются в виде бесконечной нити, состоящей из многих отдельных волокон или из одного волокна, или же в виде штапельного волокна — коротких отрезков (штапелек) некрученого волокна, длина которых соответствует длине волокна шерсти или хлопка. Штапельное волокно аналогично шерсти или хлопку служит полупродуктом для получения пряжи. Перед прядением штапельное волокно может быть смешано с шерстью или хлопком.

волокно растительный ткань ковровый

2. Искусственные волокна

Наибольшее значение в качестве исходного природного высокомолекулярного соединения для производства искусственного волокна имеет целлюлоза. На основе целлюлозы изготовляются вискозные, ацетатные и медноаммиачные волокна.

Вискозное волокно. Основным сырьем для получения вискозного волокна является древесная (обычно еловая) целлюлоза. В еловой древесине содержится около 45% целлюлозы (из1м3 древесины получается около 200 кг целлюлозы).

Для получения целлюлозы сухую еловую древесину разваривают со щелочами, растворами сульфита натрия или другими реагентами. Волокнистую целлюлозную массу отделяют от варочной жидкости (в которой остаются примеси), промывают, отбеливают и после вторичной промывки формуют в виде листов картона. Поступающая на заводы вискозного волокна целлюлоза должна содержать не менее 88% так называемой альфацеллюлозы (чистой целлюлозы, которая не растворяется в 18%-ном растворе едкого натра при комнатной температуре).

Для получения прядильной массы целлюлозу подвергают мерсеризации — обработке 18%-ным раствором едкого натра. При этом из целлюлозы удаляются растворимые вещества, и она приобретает способность вступать в последующие реакции. Целлюлоза набухает и образует с едким натром так называемую щелочную целлюлозу (алкалицеллюлозу):

[C6H7O2(OH)3]n NaOH [C6H7O2(OH)2 — ONa]n

целлюлоза щелочная целлюлоза

После мерсеризации и отжима щелочной целлюлозы ее измельчают в специальных машинах и подвергают предсозреванию, приводящему к уменьшению степени полимеризации целлюлозы вследствие окислительной деструкции (разрыва) макромолекул. Предсозревание проводят путем выдерживания измельченной щелочной целлюлозы в специальных камерах или на непрерывно движущихся лентах в течение 8-10 ч при 36-40 оС. Далее щелочную целлюлозу для перевода ее в растворимое соединение обрабатывают сероуглеродом. При этом образуется ксантогенат целлюлозы (натриевая соль кислого эфира дитиоугольной кислоты и целлюлозы):

[C6H7O2 (OH)2 — ONa]n [C6H7O2 (OH)2 — O — C — SNa]n

3. Синтетические волокна

Полиамидные волокна. Полиамидные волокна, во многих отношениях превосходящие по качеству все природные и искусственные волокна, завоевывают все большее и большее признание. К наиболее распространенным полиамидным волокнам, выпускаемым промышленностью, относятся капрон и нейлон. Более двадцати лет назад было получено полиамидное волокно энант.

6 стр., 2913 слов

Целлюлозные волокна

... процесс получения вискозного волокна: вязкий (откуда название вискоза) водный раствор целлюлозы получался после обработки целлюлозы сначала ... в качестве основы для самоклеющейся упаковочной ленты. Вискозная губка. Наряду с получением волокна или пленки, ... изменяются макроскопические физические свойства целлюлозы. Окислительные агенты оказывают на целлюлозу воздействие, не вызывая расщепления ...

Капрон — полиамидное волокно, получаемое из поликапроамида, образующегося при полимеризации капролактама (лактама ? — аминокапроновой кислоты): CH2

H2C C=O O

n H2C NH [-CH2-CH2-CH2-CH2-CH2-C-NH-]n

H2C CH2

Исходный капролактам практически получается двумя путями: из фенола и из бензола.

Окисление циклогексана проводят кислородом воздуха в жидкой фазе при 130-140оС и 15-20 кг с/см2 в присутствии катализатора — стеарата марганца. При этом образуются циклогексанон и циклогексанол в соотношении 1:1. Циклогексанол дегидрируется до циклогексанона, а последний превращается в капролактам описанным выше способом.

При строительстве новых и расширении существующих производств капролактама будет использоваться преимущественно вторая схема его получения. При этом окисление циклогексанона воздухом будет интенсифицировано за счет повышения температуры реакции до 190-200оС, что существенно сократит продолжительность реакции.

Полимеризацию капролактама ведут на тех же заводах, которые производят синтетические волокна. Капролактам перед полимеризацией расплавляют. Для предотвращения окисления лактама процесс полимеризации, протекающий при 15-16 кг с/см2 и температуре около 260оС, проводят в атмосфере азота. Образовавшийся в результате полимеризации капролактама полимер застывает в белую роговидную массу, которую затем измельчают и обрабатывают водой при повышенной температуре для извлечения непрореагировавшего мономера и образовавшихся димеров и тримеров.

Для формования волокна капрон, высушенный полимер загружают в закрытые стальные аппараты, снабженные решетками, на которых он расплавляется при 260-270оС в атмосфере азота. Отфильтрованный под давлением плав поступает в фильеры. Образующиеся после выхода изфильеры волокна охлаждают в шахте и наматывают на бобины. Сразу с бобин пучок волокон направляют на вытяжку, крутку, промывку и сушку.

Волокно капрон по внешнему виду напоминает натуральный шелк; по прочности оно значительно превосходит его, но несколько менее гигроскопично. Это волокно находит широкое применение для изготовления высокопрочного корда, тканей, чулочных и трикотажных изделий, канатов, сетей и др.

Натуральные волокна растительного происхождения.

Кенаф возделывается в основном в Индии, Китае, Иране, Узбекистане и других странах. Волокно кенафа отличается высокой гигроскопичностью и прочностью. Из него изготавливают мешковину, брезент, шпагат и т.д.

Конопля — очень древняя культура, выращивается для получения волокна преимущественно в Индии, Китае и др. В диком состоянии произрастает в России, Монголии, Индии, Китае. Из стеблей конопли получают волокно (пеньку), из которой делают морские канаты, веревки, парусину.

Джут возделывают в тропических районах Азии, Африки, Америки и Австралии. Джут на небольших площадях выращивают в Средней Азии. Волокна джута используют для изготовления технических, упаковочных, мебельных тканей и ковровых изделий.

Из волокон растительного происхождения наиболее известны хлопок и лен.

10 стр., 4572 слов

Классификация волокон

... ткани, в настоящее время предприятие работает только по государственным заказам, а также производит униформу и спецодежду для нефтегазовых компаний. ТЕКСТИЛЬНЫЕ ВОЛОКНА Натуральные волокна ... неизвитого волокна, покрытого крупными пластинчатыми чешуйками. Шерсть, которая состоит преимущественно из волокон одного типа (пуха, переходного волоса), называют однородной. Шерсть, содержащая волокна всех ...

Хлопок очень древняя культура. Его начали возделывать в Индии более 4000 лет назад. Остатки хлопковых тканей нашли в могилах древних перуанцев, раскопанных в пустынях Перу и Мексики. Значит, еще раньше, чем в Индии, перуанцы знали хлопчатник и умели делать из него ткани.

Хлопком называют волокна, покрывающие поверхность семян однолетнего растения хлопчатника, который произрастает в теплых южных странах. Развитие волокон хлопка начинается после цветения хлопчатника в период образования плодов (коробочек).

Длина волокон хлопка колеблется от 5 до 50 мм. Собранный и спрессованный в кипы хлопок называют хлопок-сырец.

При первичной обработке хлопка волокна отделяются от семян и очищаются от различных примесей. Сначала отделяются самые длинные волокна (20-50 мм), затем короткие или пух(6-20 мм) и, наконец, подпушка (менее 6 мм).

Длинные волокна используются для производства пряжи, пух — для изготовления ваты, а в смеси с длинным хлопковым волокном — для производства толстой пряжи. Волокна длиной менее 12 мм подвергаются химической переработке в целлюлозу для получения искусственных волокон.

Пшеница и лен — наиболее древние культурные растения. Лен начали возделывать девять тысяч лет назад. В горных областях Индии из него впервые стали изготовлять ткани, красивые и тонкие.

Семь тысяч лет назад лен уже был известен в Ассирии, Вавилоне. Оттуда он проник в Египет.

Льняные ткани стали там предметом роскоши, вытесняя распространенные прежде шерстяные. Только египетские фараоны, жрецы и знатные люди могли позволить себе одежду из льняных тканей.

Позднее финикийцы, а затем греки и римляне стали делать из льняного полотна паруса для своих кораблей.

Из льняных волокон получается тяжелое, прочное белое полотно. Оно великолепно для скатертей, носильного и постельного белья.

А лен, посеянный густо и снятый с поля во время цветения, дает очень нежное волокно, которое идет на тонкий и легкий батист.

Лен- однолетнее травянистое растение, которое даст волокно того же названия. Волокно льна находится в стебле растения и может достигать 1 метра. Уборку льна производят в период ранней желтой спелости. Полученное сырье для производства пряжи (нитей) подвергается дальнейшей обработке.

Первичная обработка льна состоит из замачивания льняной соломы, сушки тресты, мытья и трепания, чтобы отделить примеси.

Из очищенных и рассортированных волокон получают пряжу.

Положительные свойства хлопчатобумажных тканей: хорошие гигиенические и теплозащитные свойства, прочность, светостойкость. Под действием воды волокна хлопка даже набухают и увеличивают прочность, то есть, не боятся любой стирки. Ткани имеют хороший внешний вид, за изделиями из них нетрудно ухаживать.

Благодаря тому, что хлопчатобумажные ткани обладают хорошей гигроскопичностью и высокой воздухопроницаемостью, а льняные ткани — более высокой гигроскопичностью и средней воздухопроницаемостью, их используют для изготовления постельного белья, бытовой одежды.

Недостатки хлопчатобумажных тканей: сильная сминаемость (ткани теряют красивый внешний вид при носке), небольшая стойкость к истиранию, поэтому малая носкость.

16 стр., 7930 слов

Нетканые производства

... производства тканей, трикотажных полотен и нетканых материалов необходимыми отечественными сырьевыми ресурсами. В стране отсутствуют высококачественная (мериносовая и кроссбредная) шерсть, льноволокно высоких номеров, полиэфирные волокна ... работу швейной промышленности. Темпы роста производства швейных ... различных технологических процессах, конструкционных материалах, ... мобилизационных мощностях ...

Недостатки льняных тканей: Сильная сминаемость, малая драпируемость, жесткость, большая усадка.

5. Натуральные волокна животного происхождения

Натуральные волокна животного происхождения — шерстяные и шелковые. Ткани из таких волокон являются экологически чистыми и поэтому представляют определенную ценность для человека и положительно влияют на его здоровье.

С незапамятных времен люди использовали для изготовления тканей шерсть. С той самой поры, как стали заниматься скотоводством. В дело шли шерсть овец и коз, а в Южной Америке и лам.

Основную массу шерсти получают с овец, причем лучшую шерсть дают тонкорунные мериносовые овцы. Тонкорунные овцы известны со II века до нашей эры, когда скрестив колхидских баранов с итальянскими овцами, римляне вывели тарентайнскую породу овец с коричневой или черной шерстью. В 1 веке скрещиванием тарентайнских овец с африканскими баранами в Испании получили первых мериносов. От этого первого стада в конечном итоге произошли и все другие породы мериносов: французские, саксонские и т. д.

Из шерсти других животных широко используют козью мохеровую шерсть, получаемую с ангорских коз, ведущих свое происхождение из турецкого местечка Ангора.

Высоко упругие прокладочные материалы получают из лошадиного волоса.

В XIV-XV веках шерсть, предназначенную для прядения, чесали деревянным гребнем, имевшим несколько рядов стальных зубьев. В результате волокна в пучке располагались параллельно, что очень важно для их равномерного вытягивания и скручивания при прядении.

Из расчесанного волокна получали прочные, красивые нити, из которых вырабатывалась добротная ткань, долго не изнашивавшаяся.

Шерсть — это волосяной покров животных: овец, коз, верблюдов. Основную массу шерсти (95-97 %) дают овцы. Шерстяной покров снимают с овец специальными ножницами или машинками. Длина шерстяных волокон от 20 до 450 мм. Состригают почти цельной неразрывной массой, которая называется руном.

Виды шерстяных волокон — это волос и шерсть, они длинные и прямые, и пух — он более мягкий и извитый.

Перед отправлением на текстильные фабрики шерсть подвергают первичной обработке: сортируют, то есть подбирают волокна по качеству; треплют — разрыхляют и удаляют засоряющие примеси; промывают горячей водой с мылом и содой; сушат в сушильных машинах. Затем изготавливают пряжу, а из нее ткани.

В отделочном производстве ткани красят в различные цвета или наносят на ткани различные рисунки. Ткани из шерсти вырабатываются гладкокрашеными, пестроткаными и напечатанными.

Шерстяные волокна имеют следующие свойства: обладают высокой гигроскопичностью, то есть хорошо впитывают в себя влагу, упругие (изделия мало мнутся), стойкие к воздействию солнца (выше, чем у хлопка и льна).

Чтобы проверить шерстяное волокно, надо кусочек ткани поджечь. Во время горения волокно шерсти спекается, образовавшийся спекшийся шарик легко растирается пальцами. В процессе горения ощущается запах жженого пера. Таким путем можно определить ткань: чистая это шерсть или искусственная.

24 стр., 11918 слов

Организация швейного производства

... швейного производства, необходимые для изготовления одежды высокого качества. 1.2 Общее знакомство с предприятием Швейная фабрика ... Грамотность этого прироста увеличивается на деле тем, что в начале фабрика обрабатывала пальто сухонно- ... швейного производства все больше становится механической, ее эффективность в первую очередь зависит от оборудования. Применение химических термопластичных волокон ...

Натуральный шелк — это тонкие нити, которые получают при размотке коконов гусеницы тутового шелкопряда.

Шелковые волокна имеют следующие свойства: они обладают хорошей гигроскопичностью и воздухопроницаемостью, менее устойчивы к солнечным лучам, чем другие натуральные волокна. Горит шелк так же, как и шерсть. Изделия из натурального шелка очень приятно носить, благодаря их хорошим гигиеническим свойствам.

Список использованной литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/prirodnyie-i-himicheskie-volokna/

1. Мальцева Е.П., Материаловедение швейного производства, — 2-е изд., перераб. и доп.- М.: Легкая и пищевая промышленность, 1983

2. Калмыкова Е.А. Материаловедение швейного производства: Учеб. Пособие,- Мн.: Выш. шк., 2001

3. Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов,- 4-е изд., перераб и доп.,- М., Легпромбытиздат, 1986

4. ХХ1 век — век льна, Живетин В. Наука и жизнь №4 1999

5. Калмыкова Е.А., Лобацкая О.В. Материаловедение швейного производства: Учеб. Пособие,- Мн.: Выш. шк., 2001- 412с.

6. Мальцева Е.П., Материаловедение швейного производства, — 2-е изд., перераб. и доп.- М.: Легкая и пищевая промышленность, 1983,- 232.

7. Бузов Б.А., Модестова Т.А., Алыменкова Н.Д. Материаловедение швейного производства: Учеб. для вузов,- 4-е изд., перераб и доп.,- М., Легпромбытиздат, 1986 — 424.