В современном машиностроении применяются различные конструкционные материалы. Однако и до настоящего времени чугун является одним из основных конструкционных материалов. Например, вес чугунных отливок составляет до 00% веса машин. Это обусловливается простотой и относительной дешевизной изготовления чугунных деталей, хорошими литейными свойствами чугуна, его высокой износостойкостью, малой чувствительностью к концентраторам напряжений, способностью гасить вибрацию и т. д.
Что такое чугун? Применения чугуна.
Чугун
Рис. 0. Фазовая диаграмма стабильного равновесия Fe —С
Фазовая диаграмма состояния Fe — С (стабильная) представлена на рис. 0 (штриховые линии соответствуют выделению графита, а сплошные — цементита).
Температуры плавления чугунов значительно ниже (на 000…000 °С), чем у стали .
Углерод в чугуне может находиться в виде цементита, графита или одновременно в виде цементита и графита. Образование стабильной фазы — графита в чугуне может происходить в результате непосредственного выделения его из жидкого (твердого) раствора или вследствие распада предварительно образовавшегося цементита (при замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению РезС —> Fe + ЗС с образованием феррита и графита).
Процесс образования в чугуне (стали) графита называют графитизацией.
Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, хорошо обрабатываются резанием (с образованием ломкой стружки) и обеспечивают более чистую поверхность, чем стали (кроме автоматных сталей).
Присутствие эвтектики в структуре чугунов обусловливает его использование исключительно в качестве литейного сплава. Высокие литейные свойства при небольшой стоимости обеспечили широкое применение чугунов в промышленности.
Механические свойства чугуна обусловлены, главным образом, количеством и структурными особенностями графитной составляющей. Влияние графитных включений на механические свойства чугуна можно оценить количественно (ГОСТ 0000—00).
Чем меньше графитных включений, чем они мельче и больше степень их изолированности, тем выше прочность чугуна при одной и той же металлической основе. Наиболее высокую прочность обеспечивает шаровидная форма графитной составляющей, а для хлопьевидной составляющей характерны высокие пластические свойства. Чугун с пластинчатым графитом можно рассматривать как сталь, в который графит играет роль надрезов, ослабляющих металлическую основу.
Термическая обработка чугунов
... графит (перлитный высокопрочный чугун) 1 . Ковкий чугун – условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита ... механических свойств. Чугун подвергают отжигу, нормализации, закалке и отпуску, а также некоторым видам химико-термической обработки ( ...
Применяемые для отливок чугуны имеют в среднем состав: С — 0…00o,Si—0.0…00o,Mn—0,0…0.000o,P—0,l…l,00o,S<0,000o.
Углерод определяет количество графита в чугуне: чем выше его содержание, тем больше образуется графита и тем ниже механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) должно быть не меньше 0,0 % С.
Кремний оказывает большое влияние на структуру и свойства чугунов, так как величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от его содержания. Чем больше содержание кремния, тем шире эвтектический интервал температур. Таким образом, кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой — скорость охлаждения, можно получить различную структуру металлической основы чугуна.
Сера и марганец
Фосфор не влияет на графитизацию, а при повышенном (до 0,0…0,0 ° о) содержании повышает износостоикость чугунов, так как образуются твердые включения фосфидной эвтектики.
Самым распространенным видом термообработки чугунов является отжиг отливок при 000…000 °С для уменьшения литейных напряжений, которые могут вызвать даже коробление фасонных изделий. Нормализация чугуна проводится для аустенизации ферритной и ферритно-перлитной матриц и последующего перлитного превращения, что обеспечивает упрочнение. Закалку чугуна на мартенсит с нагревом до 000…000 °С и охлаждением в воде и масле применяют для повышения прочности и износостойкости. После закалки проводят низкий отпуск (000 °С) для уменьшения закалочных напряжений или высокий отпуск (000…000 °C для получения микроструктур сорбита или зернистого перлита, обеспечивающих повышенную вязкость.
1.1 Виды чугуна
Классификацию чугунов проводят по виду и форме углеродосо-держащей структурной составляющей, то есть по наличию и форме графита.
По виду структурной составляющей выделяют чугуны без графита — белые чугуны, в которых практически весь углерод находится в химически связанном состоянии в виде цементита. Промежуточное положение занимает половинчатый чугун, большая (« 0,0 %) часть углерода которого находится в РезС. Структура половинчатого чугуна — перлит, ледебурит и пластинчатый графит.
Чугуны с графитом в зависимости от формы последнего разделяют на серые, ковкие и высокопрочные. Серыми называют чугуны, в структуре которых графит имеет пластинчатую форму. В ковких чугунах графит имеет хлопьевидную форму, в высокопрочных чугунах -шаровидную. К числу высокопрочных относят также чугуны с графитом вермикулярной (греч. — червячок) формы, которые по свойствам (ГОСТ 00000—00) занимают промежуточное положение между чугунами с шаровидным и пластинчатым графитом .
Классификация чугунов
... в виде графита. При этом форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугуна и их свойства. Классификация чугуна с различной формой графита производится по ... ГОСТ 3443-77. По специально разработанным шкалам оценивают форму включений графита, их размеры, ...
Белые чугуны
Разновидностью белых чугунов является отбеленные чугуны. Поверхностные слои изделий из таких чугунов имеют структуру белого (или половинчатого) чугуна, а сердцевина — серого чугуна. Отбел на некоторую глубину (00…00 мм) получают путем быстрого охлаждения поверхности (например, отливка чугуна в металлические или песчаные формы).
Для снятия структурных напряжений, которые могут привести к образованию трещин, отливки подвергают нагреву при 000…000 °С. Высокая иэносостойкость отбеленных чугунов обусловлена твердостью поверхности, достигающей 000… 000 HV. Из отбеленного чугуна изготовляют прокатные валки листовых станов, колеса, шары для мельниц и др.
Серые чугуны
Модифицирование металлов — введение в металлические расплавы модификаторов, то есть веществ, небольшие количества которых (обычно не более десятых долен %) способствуют созданию дополнительных искусственных центров кристаллизации, и следовательно, образованию структурных составляющих в измельченной или округлой форме, что улучшает механические свойства металла.
Для характеристики структуры серого чугуна необходимо определять размеры, форму, распределение графита, а также структуру металлической основы. В обычном сером чугуне при медленном охлаждении во время кристаллизации графит очень слабо разветвляется. Он похож на розетку с небольшим числом изогнутых лепестков.
Металлическая основа серых чугунов формируется из аустенита при эвтектоидном распаде и может быть перлитной, ферритной и ферритно-перлитной. Образование перлита происходит легко, в сравнительно короткий промежуток времени. Для получения ферритного белого чугуна используют изотермическую выдержку при 000…000 °С, в результате которой цементит перлита распадается на феррит и пластинчатый графит.
Механические свойства серых чугунов зависят от свойств металлической основы и, главным образом, от количества, формы и размеров графитных включений. Перлитная основа обеспечивает наибольшие значения показателей прочности и износостойкости.
Марки серых чугунов согласно ГОСТ 0000—00 состоят из букв «СЧ» и цифр, соответствующих минимальному пределу прочности при растяжении Ств, МПа / 00. Чугун СЧ00 — ферритный; СЧ00, СЧ00, СЧ00 — ферритно-перлитные чугуны, начиная с СЧ00 — перлитные чугуны.
На долю серого чугуна с пластинчатым графитом приходится около 00 % общего производства чугунных отливок. Серые чугуны обладают высокими литейными качествами (жидкотекучесть, малая усадка, незначительный пригар металла к форме и др.), хорошо обрабатываются и сопротивляются износу, однако из-за низких прочности и пластических свойств в основном используются для неответственных деталей. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, колонки, каретки и др.); в автомобилестроении из ферритно-перлитных чугунов делают картеры, крышки, тормозные барабаны и др., а из перлитных чугунов — блоки цилиндров, гильзы, маховики и др. В строительстве серый чугун применяют, главным образом, для изготовления деталей, работающих при сжатии (башмаков, колонн), а также санитарно-технических деталей (отопительных радиаторов, труб).
Значительное количество чугуна расходуется для изготовления тюбингов, из которых сооружается туннель метрополитена. Из серого чугуна, содержащего фосфор (0,0 %), изготавливают архитектурно-художественные изделия.
Термическая обработка стали и чугуна
... улучшению общего комплекса механических свойств, называется улучшением и является основным видом термической обработки конструкционных сталей. 3. Технология термической обработки стали 3.1 Отжиг и нормализация Отжиг - термическая обработка, при которой сталь нагревается до определенной температуры, выдерживается при ней ...
Ковкие чугуны
Рис. 1. Схема отжига белого чугуна на ковкий
Первая стадия (000…0000 °С) подбирается по длительности такой, чтобы весь цементит, находящийся в структуре отливки, распался на аустенит и хлопьевидный графит. Процесс графитообразования облегчается при модифицировании (например, алюминием и бором).
Чугун, полученный таким образом, называется модифицированным.
На второй стадии графитизирущего отжига при температуре эвтектоидного превращения формируется металлическая основа ковкого чугуна. В зависимости от режимов охлаждения ковкие чугуны могут иметь перлитную (непрерывное охлаждение), ферритную (очень медленное охлаждение в интервале 000…000 °С или изотермическая выдержка при 000…000 °С) или ферритно-перлитную (сокращение продолжительности второй стадии отжига) металлические основы. Для получения в модифицированном ковком чугуне перлитной основы рекомендуется увеличивать содержание марганца, хрома и некоторых других элементов, которые повышают устойчивость цементита к распаду на феррит и пластинчатый графит в области температур эвтектоидного превращения.
Ковкие чугуны с перлитной металлической основой обладают высокими твердостью (000…000 НВ) и прочностью (Ств = 000…000 МПа) в сочетании с небольшой пластичностью (0 = 0,0…0,0 %).
Ковкий ферритный чугун характеризуется высокой пластичностью (0 = 00…00 %) и относительно низкой прочностью (Ств = 000…000 МПа).
Существенными недостатками графитизирующего отжига чугунов является длительность (00…00 ч) отжига отливок и ограничение толщины их стенок.
Ковкие чугуны согласно ГОСТ 0000—00 маркируются двумя буквами (КЧ — ковкий чугун) и двумя группами цифр. Первые две цифры в обозначении марки соответствуют минимальному пределу прочности при растяжении (0в, МПа / 00, цифры после тире — относительному удлинению при растяжении, °’о. Чугуны марок КЧЗО—0, КЧЗЗ—0, КЧ00—00, КЧ00—00, имеющие повышенное значение удлинения при растяжении, относятся к ферритным, а марок КЧ00—0, КЧ00—0, КЧ00—0, КЧ00—0, КЧ00—0, КЧ00—0, КЧ00—0.0 — к перлитным чугунам.
Ковкие чугуны, обладая высокими пластическими свойствами, находят применение при изготовлении разнообразных тонкостенных (до 00 мм) деталей, работающих при ударных и вибрационных нагрузках, — фланцы, муфты, картеры, ступицы и др. Масса этих деталей —от нескольких граммов до нескольких тонн.
Для повышения твердости, износостойкости и прочности изделий из ковкого чугуна иногда применяют нормализацию или закалку. Закалка с последующим высоким отпуском позволяет получить структуру зернистого перлита.
Высокопрочный чугун
Чтобы избежать образования в высокопрочных чугунах ледебурита, их подвергают графитизирующему отжигу. Продолжительность такого отжига благодаря повышенному содержанию графити-зирующих элементов (углерода, кремния) значительно короче, чем при отжиге белого чугуна.
Структура высокопрочного чугуна состоит из металлической основы (феррит, перлит) и включений графита шаровидной формы. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу, чем пластинчатый графит, и не является активным концентратором напряжений. Ферритные чугуны имеют сто,0 = 000…000 МПа, 0 = 00…00 «/о, 000…000 НВ, перлитные —ао,0= 000…000 МПа, 0 = 0…0 % и 000…000 НВ. Марки высокопрочных чугунов согласно ГОСТ 0000—00 состоят из букв «ВЧ» и цифр, соответствующих минимальному пределу прочности при растяжении Ста, МПа / 00: ВЧ00, ВЧ00, ВЧ00 — ферритные чугуны; ВЧ00, ВЧ00, ВЧ00, ВЧ00, ВЧ 000—перлитные чугуны.
Производство чугуна и стали
... стали состоит из доменного процесса, в ходе которого из руды получается чугун, и сталеплавильного передела, приводящего к уменьшению в металле количества углерода и других примесей. Современный высокий уровень металлургического производства ... других руд. Шпатовый железняк (сидерит), Марганцевые руды 2.2. Производство чугуна в доменной печи. Выплавка чугуна производится в огромных доменных печах, ...
Высокопрочные чугуны обладают хорошими литейными и потребительскими свойствами (обрабатываемость резанием, способность гасить вибрации, высокая износостоикость и др.) свойствами. Они используются для массивных отлив,ок взамен стальных литых и кованых деталей — цилиндры, шестерни, коленчатые и распределительные валы и др.
Для повышения механических свойств (пластичности и вязкости) и снятия внутренних напряжений отливки подвергают термической обработке (отжигу, нормализации, закалке и отпуску).
Рекомендуется подвергать чугунные изделия объемной закалке. Образование мелкоигольчатого мартенсита в закаленном поверхностном слое изделий повышает их износостоикость в три и более раз. Для повышения износостойкости применяется также азотирование (или азотирование с последующей «обдувкой дробью»), при котором в поверхностных слоях изделий создаются благоприятные сжимающие напряжения.
Чугуны специального назначения, Жаростойкими
К жаропрочным чугунам относятся аустенитные чугуны с шаровидным графитом ЧН00ХЗШ и ЧН00Г0Ш. Для повышения жаропрочности чугуны подвергают отжигу с последующим отпуском. После отжига легированные карбиды приобретают форму мелких округлых включений.
коррозионностойких
немагнитных чугунов
износостойким чугунам
Антифрикционными чугунами
Антифрикционные серые чугуны — перлитные чугуны АЧС-0 и АЧС-0 и перлитно-ферритный чугун АЧС-0. Эти чугуны обладают низким коэффициентом трения, зависящим от соотношения феррита и перлита в основе, а также от количества и формы графита. В перлитных чугунах высокая износостойкость обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфорной эвтектики при наличии изолированных выделений пластинчатого графита.
Антифрикционные серые чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Детали, работающие в паре с закаленными или нормализованными стальными валами, изготавливают из чугунов АЧС-0 и АЧС-0, а для работы в паре с термически необработанными валами применяют чугун АЧС-0.
Антифрикционные высокопрочные (с шаровидным графитом) чугуны (ГОСТ 0000—00) изготовляют с перлитной структурой — АЧВ-0 и ферритно-перлитной (« 00 % перлита) — АЧВ-0. АЧВ-0 используется для работы в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом. АЧВ-0 применяют для пары с валом в состоянии поставки («сырым»).
Главное достоинство антифрикционных чугунов по сравнению с баббитами и антифрикционными бронзами — низкая стоимость, а основной недостаток — плохая прирабатываемость, что требует точного сопряжения трущихся поверхностей
Углеродистые и легированные стали
... 30ХА применяются для деталей автотракторной и автомобильной промышленности. Хромистые стали с высоким содержанием углерода (0,9-1,1%) и хрома (0,8-1,65%) идут на изготовление колец, шариков ... легированных сталей Х12МФ Детали, работающие под большим давлением (до 1400-1600 Мпа). Не применяется для сварных конструкций. Обрабатываемость резанием – в горячекатаном состоянии. Сталь склонна ...
1.2 Получение чугуна. Доменный процесс
Главный исходный материал для производства чугуна в доменных печах — железные руды. К ним относят горные породы, содержащие железо в таком количестве, при котором выплавка становится экономически выгодной.
Железная руда
В зависимости от рудного вещества железные руды бывают богатыми, которых используют непосредственно, и бедными, которых подвергают обогащению.
В доменном производстве применяют разные железные руды.
Красный железняк, Бурый железняк, Магнитный железняк
руда обладает хорошо выраженными магнитными свойствами, имеет темно-серый или черный с различными оттенками цвет. Пустая порода руды кремнеземистая с примесями других окислов. Железо из магнитного железняка восстанавливается труднее, чем из других руд.
Шпатовый железняк, Марганцевые руды, Производство чугуна в доменной печи.
Выплавка чугуна производится в огромных доменных печах, выложенных из огнеупорных кирпичей достигающих 30 м высоты при внутреннем диаметре около 12 м.
Разрез доменной печи схематически изображен на рисунке.2
Верхняя ее половина носит название шахты и заканчивается наверху отверстием — калашником, которая закрывается подвижной колонкой — кколашниковым затвором. Самая широкая часть печи называется распаром, а нижняя часть — горном. Через специальные отверстия в горне(фурмы) в печать вдувается горячий воздух или кислород.
Доменную печь загружают сначала коксом, а затем послойно агломератом и коксом. Агломерат — это определенным образом подготовленная руда, спеченная с флюсом. Горение и необходимая для выплавки чугуна температура поддерживаются вдуванием в горн подогретого воздуха или кислорода. Последний поступает в кольцевую трубу, расположенную вокруг нижней части печи, а из нее по изогнутым трубкам через фурмы в горн. В горне кокс сгорает, образуя СО2, который, поднимаясь вверх и проходя сквозь слои наколенного кокса, взаимодействует с ним и образует СО. Образовавшийся оксид углерода и восстонавливает большую часть руды, переходя снова в СО2.
Процесс восстановления руды происходит главным образом в верхней части шахты. Его можно выразить суммарным уравнением:
Fe2O3 + 3CO = 2Fe + 3CO2
Пустую породу в руде образуют, главным образом диоксид кремния SiO2.
Это — тугоплавкое вещество. Для превращения тугоплавких примесей в более легкоплавкие соединения к руде добавляются флюс . Обычно в качестве флюса используют CaCo3. При взаимодействии его с SiO2 образуется CaSiO2, легко отделяющийся в виде шлака.
При восстановлении руды железо получается в твердом состоянии. Постепенно оно опускается в более горячую часть печи — распар — и растворяет в себе углерод; образуется чугун. Последний плавится и стекает в нижнюю часть горна, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки выпускают по мере накопления через особые отверстия, забитые в остальное время глиной.
Выходящие из отверстия печи газы содержат до 25% СО. Их сжигают в особых аппаратах-кауперах, предназначенных для предварительного нагревания вдуваемого в печь воздуха. Доменная печь работает непрерывно. По мере того как верхние слои руды и кокса опускаются, в печь добавляют новые их порции. Смесь руды и кокса доставляется подъемниками на верхнюю площадку печи и загружается в чугунную воронку, закрытую снизу колошниковым затвором. При опускании затвора смесь попадает в печь. Работа печи продолжается в течение нескольких лет, пока печь не потребует капитального ремонта.
Проектирование участка механического цеха для обработки детали-представителя ...
... изготовления. Выбор вида заготовки зависит от материала детали, её конструкции, вида производства. Так как производство серийное, стакан изготовлен из стали ... детали и анализ детали на технологичность Деталь - стакан подшипника ... стаканы, тормозные диски. Химический состав стали 45Л, % Углерод ... деталей для бесперебойной работы сборочного цеха: 2-3 дня для крупных деталей; 5-7 дней для средних деталей; ...
Процесс выплавки может быть ускорен путем применения в доменных печах кислорода. При вдувании в доменную печь обогащенного кислородом воздуха предварительный подогрев его становится излишним, а значит, отпадает необходимость в громоздких и сложных кауперах и весь процесс упрощается. Вместе с тем производительность печи повышается и уменьшается расход топлива. Такая доменная печь дает в 1,5 раза больше железа и требует кокса на ? меньше
чем обычная.
Рис2.
Виды стали
Железоуглеродистые сплавы с содержанием углерода до 2,14% называются сталями. Кроме железа и углерода в сталях содержатся полезные и вредные примеси.
Сталь — основной металлический материал, широко применяемый для изготовления деталей машин, летательных аппаратов, приборов, различных инструментов и строительных конструкций. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств. Методы широкого производства стали были открыты в середине ХIX в. В это же время были уже проведены и первые металлографические исследования железа и его сплавов.
Стали сочетают высокую жесткость с достаточной стати-ческой и циклической прочностью. Эти параметры можно менять в широком диапазоне за счет изменения концентрации углерода, легирующих элементов и технологий термической и химико-термической обработки. Изменив химический состав, можно получить, стали с различными свойствами, и использовать их во многих отраслях техники и народного хозяйства.
Углеродистые стали, классифицируют по содержанию углерода, назначению, качеству, степени раскисления и структуре в равновесном состоянии.
По содержанию углерода стали, подразделяются на низкоугле-родистые (< 0,3 % С), среднеуглеродистые (0,3-0,7 % С) и высокоугле-родистые (> 0,7 % С).
По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали, представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали, подразделяют на стали для режущего, измерительного инструмента, штампов холодного и горячего (до 200 0С) деформирования.
По качеству стали, классифицируют на обыкновенного качества, качественные, высококачественные. Под качеством стали понимается совокупность свойств, определяемых металлургическим процессом ее производства. Стали обыкновенного качества бывают только углеродистыми (до 0,5 % С), качественные и высококачественные — углеродистыми и легированными.
По степени раскисления и характеру затвердевания стали классифицируют на спокойные, полуспокойные и кипящие. Раскисление — процесс удаления из жидкого металла кислорода, проводимый с целью предотвращения хрупкого разрушения стали при горячей деформации.
Полуспокойные стали по степени раскисления занимают промежуточное положение между спокойными и кипящими.
По структуре в равновесном состоянии стали, делятся на:
Легированные стали
... свойств горячекатаной углеродистой стали от содержания углерода стали. Кроме углерода, в стали есть еще другие ... отраслях народного хозяйства. Наиболее широко применяют стали. Они должны иметь хорошие технологические ... стали, марганец или кремний, а их количество должно превышать 1 %. В сталях легирование ... стали, а некоторые из них к тому же являются дефицитными металлами, поэтому добавление их в сталь ...
1) доэвтектоидные, имеющие в структуре феррит и перлит;
2) эвтектоидные, структура которых состоит из перлита;
3) заэвтектоидные, имеющие в структуре перлит и цементит вторичный.
Углеродистые конструкционные стали
Стали обыкновенного качества выпускают в виде проката (прутки, балки, листы, уголки, трубы, швеллеры и т.п.) в нормализованном состоянии и в зависимости от назначения и комплекса свойств подразделяют на группы: А, Б, В.
Стали маркируются сочетанием букв Ст и цифрой (от 0 до 6), показывающей номер марки, а не среднее содержание углерода в ней, хотя с повышением номера содержание углерода в стали увеличивается. Стали групп Б и В имеют перед маркой буквы Б и В, указывающие на их принадлежность к этим группам. Группа А в обозначении марки стали не указывается. Степень раскисления обозначается добавлением индексов: в спокойных сталях — «сп», полуспокойных — «пс», кипящих — «кп», а категория нормируемых свойств (кроме категории 1) указывается последующей цифрой. Спокойными и полуспокойными производят стали Ст1 — Ст6, кипящими — Ст1 — Ст4 всех трех групп. Сталь Ст0 по степени раскисления не разделяют.
Стали группы А используют в состоянии поставки для изделий, изготовление которых не сопровождается горячей обработкой. В этом случае они сохраняют структуру нормализации и механические свойства, гарантируемые стандартом.
Сталь марки Ст3 используется в состоянии поставки без обработки давлением и сваркой. Ее широко применяют в строительстве для изготовления металлоконструкций.
Стали группы Б применяют для изделий, изготавливаемых с применением горячей обработки (ковка, сварка и в отдельных случаях термическая обработка), при которой исходная структура и механические свойства не сохраняются. Для таких деталей важны сведения о химическом составе, необходимые для определения режима горячей обработки.
Стали группы В дороже, чем стали групп А и Б, их применяют для ответственных деталей (для производства сварных конструкций).
Углеродистые стали обыкновенного качества (всех трех групп) предназначены для изготовления различных металлоконструкций, а также слабонагруженных деталей машин и приборов. Эти стали, используются, когда работоспособность деталей и конструкций обеспечивается жесткостью. Углеродистые стали обыкновенного качества широко используются в строительстве при изготовлении железобетонных конструкций. Способностью к свариванию и к холодной обработке давлением отвечают стали групп Б и В номеров 1-4, поэтому из них изготавливают сварные фермы, различные рамы и строительные металлоконструкции, кроме того, крепежные изделия, часть из которых подвергается цементации.
Среднеуглеродистые стали номеров 5 и 6, обладающие большой прочностью, предназначаются для рельсов, железнодорожных колес, а также валов, шкивов, шестерен и других деталей грузоподъемных и сельскохозяйственных машин. Некоторые детали из этих сталей групп Б и В подвергаются термической обработке — закалке с последующим высоким отпуском.
В машиностроении углеродистые качественные стали, используются для изготовления деталей разного, чаще всего неответственного назначения и являются достаточно дешевым материалом. В промышленность эти стали поставляются в виде проката, поковок, профилей различного назначения с гарантированным химическим составом и механическим свойствами.
Арматурная сталь и металлоконструкции
... ГОСТ 2590-88 для обычной точности прокатки. 1.7 Арматурная сталь периодического профиля представляет собой круглые профили с двумя продольными ... 8 мм - по двухзаходной винтовой линии. 1.8 Арматурная сталь класса А-II (А300), изготовленная в обычном исполнении, профилем, ... Черт. 2 1.9 Размеры и предельные отклонения размеров арматурной стали периодического профиля, изготавливаемого по черт. 1а и б, ...
В машиностроении применяют углеродистые качественные стали, поставляемые по ГОСТ 1050-74. Маркируются эти стали двузначными цифрами 05, 08, 10, 15, 20, …, 75, 80, 85, обозначающими среднее содержание углерода в сотых долях процента.
К углеродистым сталям относят также стали с повышенным содержанием марганца (0,7-1,0 %) марок 15Г, 20Г, 25Г, …, 70Г, имеющих повышенную прокаливаемость.
Спокойные стали маркируют без индекса, полуспокойные и кипящие — с индексом соответственно «пс» и «кп». Кипящие стали производят марок 05кп, 08кп, 10кп, 15кп, 20кп, полуспокойные — 08пс, 10пс, 15пс, 20пс.
Качественные стали широко применяются в машиностроении и приборостроении, так как за счет разного содержания углерода в них, а соответственно и термической обработки можно получить широкий диапазон механических и технологических свойств.
Низкоуглеродистые стали 05кп, 08кп, 10кп, 15кп, 20кп отличаются малой прочностью и высокой пластичностью в холодном состоянии. Эти стали в основном производят в виде тонкого листа и используют после отжига или нормализации для холодной штамповки с глубокой вытяжкой. Они легко штампуются из-за малого содержания углерода и незначительного количества кремния, что и делает их очень мягкими. Их можно использовать в автомобилестроении для изготовления деталей сложной формы. Глубокая вытяжка из листа этих сталей применяется при изготовлении консервных банок, эмалированной посуды и других промышленных изделий.
Спокойные стали 08, 10 применяют в отожженном состоянии для конструкций невысокой прочности — емкости, трубы и т. д.
Стали 10, 15, 20 и 25 также относятся к низкоуглеродистым сталям, они пластичны, хорошо свариваются и штампуются. В нормализованном состоянии в основном их используют для крепежных деталей — валики, оси и т. д. Для увеличения поверхностной прочности этих сталей их цементуют (насыщают поверхность углеродом) и применяют для деталей небольшого размера, например слабонагруженных зубчатых колес, кулачков и т. д.
Среднеуглеродистые стали 30, 35, 40, 45, 50 и аналогичные стали с повышенным содержанием марганца 30Г, 40Г и 50Г в нормализованном состоянии отличаются повышенной прочностью, но соответственно меньшей вязкостью и пластичностью. В зависимости от условий работы деталей из этих сталей к ним применяют различные виды термообработки: нормализацию, улучшение, закалку с низким отпуском, закалку ТВЧ и др.
Среднеуглеродистые стали применяют для изготовления небольших валов, шатунов, зубчатых колес и деталей, испытывающих циклические нагрузки. В крупногабаритных деталях больших сечений из-за плохой прокаливаемости механические свойства значительно снижаются.Высокоуглеродистые стали 60, 65, 70, 75, 80 и 85, а также с повышенным содержанием марганца 60Г, 65Г и 70Г в основном используют для изготовления пружин, рессор, высокопрочной проволоки и других изделий с высокой упругостью и износостойкостью. Их подвергают закалке и среднему отпуску на структуру троостит в сочетании с удовлетворительной вязкостью и хорошим пределом выносливости.
Автоматные стали.
Улучшение обрабатываемости достигается модифицированием кальцием (вводится в жидкую сталь в виде силикокальция), который глобулизирует сульфидные включения, что положительно влияет на обрабатываемость, но не так активно, как сера и фосфор.
Сера образует большое количество сульфидов марганца, вытянутых в направлении прокатки. Сульфиды оказывают смазывающее действие, нарушая при этом сплошность металла. Фосфор повышает хрупкость феррита, облегчая отделение стружки металла во время процесса резания. Оба эти элемента способствуют уменьшению налипания на режущий инструмент и получению гладкой блестящей обрабатываемой поверхности.
Однако необходимо помнить, что повышение содержания серы и фосфора снижает качество стали. Стали, содержащую серу, имеют ярко выраженную анизотропию механических свойств и пониженную коррозионную стойкость.
Стали А11, А12, А20 используют для крепежных деталей и изделий сложной формы, не испытывающих больших нагрузок, но к ним предъявляются высокие требования по точности размеров и чистоты поверхности.
Стали А30 и А40Г предназначены для деталей, испытывающих более высокие напряжения.
Свинец содержащие стали широко применяют для изготовления деталей двигателя.
В автоматных селено содержащих сталях повышается обрабатываемость за счет образования селенидов, сульфоселенидов, которые обволакивают твердые оксидные включения и тем самым устраняют их истирающее действие. Кроме того, селениды сохраняют глобулярную форму после обработки давлением, поэтому практически не вызывают анизотропии свойств и не ухудшают коррозионную стойкость стали, как сера. Применение этих сталей снижает расход инструмента в два раза и до 30 % повышает производительность.
Конструкционные низколегированные стали
Низколегированные стали, содержат до 2,5 % легирующих элементов. Обозначение марки включает в себя цифры и буквы, указывающие на примерный состав стали. В начале марки приводятся двузначные цифры, указывающие среднее содержание углерода в сотых долях процента. Буквы справа от цифры обозначают легирующие элементы: А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, Н — никель, М — молибден, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, Х — хром, Ц — цирконий, Ч — редкоземельные элементы, Ю — алюминий. Следующие после буквы цифры указывают примерное содержание (в целых процентах) соответствующего легирующего элемента (при содержании 1-1,5 % и менее цифра отсутствует).
К данной группе относят, стали с содержанием углерода 0,1-0,3 %, обеспечивающие после химико-термической обработки, закалки и низкого отпуска высокую поверхностную твердость при вязкой, но достаточно прочной сердцевине. Эти стали, используют для изготовления деталей машин и приборов (кулачков, зубчатых колес и др.), испытывающих переменные и ударные нагрузки и одновременно подверженных износу.
Конструкционные цементуемые стали
Карбидо- и нитридообразующие элементы (такие, как Cr, Mn, Mo и др.) способствуют повышению прокаливаемости, поверхностной твердости, износостойкости и контактной выносливости. Никель повышает вязкость сердцевины и диффузионного слоя и снижает порог хладноломкости. Цементуемые (нитроцементуемые) легированные стали по механическим свойствам подразделяют на две группы: стали средней прочности с пределом текучести менее 700 МПа (15Х, 15ХФ) и повышенное прочности с пределом текучести 700-1100 МПа (12Х2Н4А, 18Х2Н4МА и др.).
Хромистые (15Х, 20Х) и хромованадиевые (15ХФ) стали цементуются на глубину до 1,5 мм. После закалки (880 0С, вода, масло) и последующего отпуска (180 0С, воздух, масло) стали имеют следующие свойства: ув = 690-800 МПа, д = 11-12 % , KCU = 0,62 МДж/м2.
Хромомарганцевые стали (18ХГТ, 25ХГТ), широко применяемые в автомобилестроении, содержат по 1 % хрома и марганца (дешевого заменителя никеля в стали), а также 0,06 % титана. Их недостатком является склонность к внутреннему окислению при газовой цементации, что приводит к снижению твердости слоя и предела выносливости. Этот недостаток устраняется легированием стали молибденом (25 ХГМ).
Для работы в условиях изнашивания используют сталь 20ХГР, легированную бором. Бор повышает прокаливаемость, и прочность стали, но снижает ее вязкость и пластичность.
Хромоникельмолибденовая (вольфрамовая) сталь 18Х2Н4МА (18Х2Н4ВА) относится к мартенситному классу и закаливается на воздухе, что способствует уменьшению коробления. Легирование хромоникелевых сталей W или Mo дополнительно повышает их прокаливаемость. Причем Мо существенно повышает прокаливаемость цементованного слоя, в то время как хром и марганец увеличивают прежде всего прокаливаемость сердцевины. В цементованном состоянии данную сталь применяют для изготовления зубчатых колес авиационных двигателей, судовых редукторов и других крупных деталей ответственного назначения. Эту сталь используют также как улучшаемую при изготовлении деталей, подверженных большим статическим и ударным нагрузкам.
Конструкционные улучшаемые стали
Улучшаемыми называют такие стали, которые используются после закалки с высоким отпуском (улучшения).
Эти стали (40Х, 40ХФА, 30ХГСА, 38ХН3МФА и др.) содержат 0,3-0,5 % углерода и 1-6 % легирующих элементов. Стали закаливают с 820-880 0С в масле (крупные детали — в воде); высокий отпуск производят при 500-650 0С с последующим охлаждением в воде, масле или на воздухе (в зависимости от состава стали).
Структура стали после улучшения — сорбит. Данные стали применяют для изготовления валов, шатунов, штоков и других деталей, подверженных воздействию циклических или ударных нагрузок. В связи с этим улучшаемые стали должны обладать высоким пределом текучести, пластичностью, вязкостью, малой чувствительностью к надрезу.
Стали относятся к мартенситному классу, слабо разупрочняются при нагреве до 300-400 0С. Из них изготавливают валы и роторы турбин, тяжело нагруженные детали редукторов и компрессоров.
Рессорно-пружинные стали
Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям — это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению.
Стали для пружин и рессор содержат 0,5-0,75 % С; их также дополнительно легируют кремнием (до 2,8 %), марганцем (до 1,2 %), хромом (до 1,2 %), ванадием (до 0,25 %), вольфрамом (до 1,2 %) и никелем (до 1,7 %).
При этом происходит измельчение зерна, способствующее возрастанию сопротивления стали малым пластическим деформациям, а следовательно, ее релаксационной стойкости.
Широкое применение на транспорте нашли кремнистые стали 55С2, 60С2А, 70С3А. Однако они могут подвергаться обезуглероживанию, графитизации, резко снижающим характеристики упругости и выносливости материала. Устранение указанных дефектов, а также повышение прокаливаемости и торможение роста зерна при нагреве достигается дополнительным введением в кремнистые стали хрома, ванадия, вольфрама и никеля.
Лучшими технологическими свойствами, чем кремнистые стали, обладает сталь 50ХФА, широко используемая для изготовления автомобильных рессор. Клапанные пружины делают из стали 50ХФА, не склонной к обезуглероживанию и перегреву, но имеющей малую прокаливаемость.
Термическая обработка легированных пружинных сталей (закалка 850-880 0С, отпуск 380-550 0С) обеспечивают получение высоких пределов прочности и текучести. Применяется также изотермическая закалка.
Максимальный предел выносливости получают при термической обработке на твердость HRC 42-48.
Для изготовления пружин также используют холоднотянутую проволоку (или ленту) из высокоуглеродистых сталей 65, 65Г, 70, У8, У10 и др.
Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных (30Х13), мартенситно-стареющих (03Х12Н10Д2Т), аустенитных нержавеющих (12Х18Н10Т), аустенитно-мартенситных (09Х15Н8Ю) и других сталей и сплавов.
Шарикоподшипниковые стали
Для обеспечения работоспособности изделий шарикоподшипниковая сталь должна обладать высокой твердостью, прочностью и контактной выносливостью. Это достигается повышением качества металла: его очисткой от неметаллических включений и уменьшением пористости посредством использования электрошлакового или вакуумно-дугового переплава.
При изготовлении деталей подшипника широко используют шарикоподшипниковые (Ш) хромистые (Х) стали ШХ15СГ (последующая цифра 15 указывает содержание хрома в десятых долях процента — 1,5 %).
ШХ15СГ дополнительно легирована кремнием и марганцем для повышения прокаливаемости. Отжиг стали на твердость порядка 190 НВ обеспечивает обрабатываемость полуфабрикатов резанием и штампуемость деталей в холодном состоянии. Закалка деталей подшипника (шариков, роликов и колец) осуществляется в масле с температур 840-860 0С. Перед отпуском детали охлаждают до 20-25 0С для обеспечения стабильности их работы (за счет уменьшения количества остаточного аустенита).
Отпуск стали проводят при 150-170 0С в течение 1-2 ч.
Детали подшипников качения, испытывающие большие динамические нагрузки, изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей их цементацией и термической обработкой. Для деталей подшипников, работающих в азотной кислоте и других агрессивных средах, используется сталь 95Х18, содержащая 0,95 % С и 18 % Cr.
Износостойкие стали
Износостойкость деталей обычно в первую очередь обеспечивается повышенной твердостью поверхности. Однако высокомарганцевая аустенитная сталь 110Г13Л (1,25 % С, 13 % Mn, 1 % Cr, 1 % Ni) при низкой начальной твердости (180-220 НВ) успешно работает на износ в условиях абразивного трения, сопровождаемого воздействием высокого давления и больших динамических (ударных) нагрузок (такие условия работы характерны для траков гусеничных машин, щек дробилок и др.).
Это объясняется повышенной способностью стали упрочняться в процессе холодной пластической деформации, равной 70 %, твердость стали возрастает с 210 НВ до 530 НВ. Высокая износостойкость стали достигается не только деформационным упрочнением аустенита, но и образованием мартенсита с гексагональной или ромбоэдрической решеткой. При содержании фосфора более 0,025 % сталь становится хладноломкой. Структура литой стали представляет собой аустенит с выделившимся по границам зерен избыточными карбидами марганца, снижающими прочность и вязкость материала. Для получения одно-фазной аустенитной структуры отливки закаливают в воде с температуры 1050-1100 0С. В таком состоянии сталь имеет высокую пластичность, низкую твердость и невысокую прочность.
Изделия, работающие в условиях кавитационного износа, изготавливают из сталей 30Х10Г10, 0Х14Г12М.
Корозионностойкие стали
Стали, устойчивые против электрохимической коррозии, называются коррозионно-стойкими (нержавеющими).
Устойчивость стали против коррозии достигается введением в нее элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, препятствующие непосредственному контакту стали с агрессивной средой, а также повышающие ее электрохимический потенциал в данной среде.
Нержавеющие стали, разделяют на две основные группы: хромистые и хромоникелевые.
Хромистые коррозионно-стойкие стали применяют трех типов: с 13, 17 и 27 % Cr, при этом в сталях с 13 % Cr содержание углерода может изменяться в зависимости от требований в пределах от 0,08 до 0,40 %. Структура и свойства хромистых сталей зависят от количества хрома и углерода. В соответствии со структурой, получаемой при нормализации, хромистые стали подразделяют на следующие классы: ферритный (стали 08Х13, 12Х17, 15Х25Т, 15Х28), мартенситно- ферритный (12Х13) и мартенситный (20Х13, 30Х13, 40Х13).
Стали с низким содержанием углерода (08Х13, 12Х13) пластичны, хорошо свариваются и штампуются. Их подвергают закалке в масле (1000-1050 0С) с высоким отпуском при 600-800 0С и применяют для изготовления деталей, испытывающих ударные нагрузки (клапаны гидравлических прессов) или работающих в слабоагрессивных средах (лопатки гидравлических и паровых турбин и компрессора).
Эти стали можно использовать при температурах до 450 0С (длительная работа) и до 550 0С (кратковременно).
Стали 30Х13 и 40Х13 обладают высокой твердостью и повышенной прочностью. Эти стали закаливают с 1000-1050 0С в масле и отпускают при 200-300 0С. Эти стали используют для изготовления карбюраторных игл, пружин, хирургических инструментов и т.д. Высокохромистые стали ферритного класса (12Х17, 15Х25Т и 15Х28) обладают более высокой коррозионной стойкостью по сравнению со сталями, содержащими 13 % Cr. Эти стали термической обработкой не упрочняются. Они склонны к сильному росту зерна при нагреве свыше 850 0С. Высокохромистые стали ферритного класса используются часто как окалиностойкие.
Хромоникелевые нержавеющие стали в зависимости от структуры подразделяют на аустенитные, аустенитно-мартенситные и аустенитно-ферритные. Структура хромоникелевых сталей зависит от содержания углерода, хрома, никеля и других элементов.
Стали аустенитного класса с 18 % Cr и 9-10 % Ni (12Х18Н9, 17Х18Н9 и др.) в результате закалки приобретают аустенитную структуру и характеризуются высокой пластичностью, умеренной прочностью, хорошей коррозионной стойкостью в окислительных средах. Эти стали технологичны (хорошо свариваются, штампуются, подвергаются холодной прокатке и т.д.).
Стали 12Х18Н9, 17Х18Н9 после медленного охлаждения из аустенитной области имеют структуру состоящую из аустенита, феррита и карбидов. С целью растворения карбидов, а также предотвращения их выделения в процессе медленного охлаждения аустенитные стали нагревают до 1050-1120 0С и закаливают в воде, масле или на воздухе. Аустенитные стали не склонны к хрупкому разрушению при низких температурах, поэтому хромоникелевые коррозионно-стойкие стали широко используются в криогенной технике для хранения сжиженных газов, изготовления оболочек топливных баков и ракет и т.д.
Стали аустенитно-мартенситного класса (09Х15Н8Ю, 09Х17Н7Ю) получили широкое применение в основном как высокопрочные. Они хорошо свариваются, устойчивы против атмосферной коррозии. С целью обеспечения достаточной прочности и одновременно повышенной коррозионной стойкости сталь 09Х15Н8Ю подвергается следующей термической обработке: закалке на аустенит (925-975 0С) с последующей обработкой холодом (-70 0С) и старением (350-3800С).
Эти стали применяют для изготовления обшивки, сопловых конструкций и силовых элементов узлов летательных аппаратов.
Стали аустенитно-ферритного класса (08Х22Н6Т, 03Х23Н6, 08Х21Н6М2Т, 10Х25Н5М2 и др.) содержат 18-30 % Cr, 5-8 % Ni, до 3 % Mo, 0,03-0,10 % С, а также добавки Ti, Nb, Cu, Si и Ni. Эти стали после закалки в воде с 1000-1100 0С имеют структуру, состоящую из равномерно распределенных между собой зерен аустенита и феррита с содержанием последнего порядка 40-60 %. Эти стали, применяют в химическом и пищевом машиностроении, судостроении, авиации, медицине.