Стандартизация в области телекоммуникаций

1. Организации стандартизации в области телекоммуникаций

Организации стандартизации в области телекоммуникаций — это организации, цель деятельности которых заключается в создании единых международных стандартов. Отсутствие единых стандартов приводит к несовместимости оборудования различных производителей и, как следствие, невозможности организации международной связи. Организации стандартизации обеспечивают условия для обсуждения прогрессивных технологий, утверждают результаты этих обсуждений в виде официальных стандартов, а также обеспечивают распространение утвержденных стандартов.

Порядок работы организаций стандартизации по принятию стандартов может отличаться. Однако он схож в том, что производится несколько этапов разработки и обсуждения новых технологий, разработки проектов стандартов, голосования по всем или некоторым аспектам этих стандартов и, наконец, официального выпуска завершенных стандартов.

Наиболее известными организациями стандартизации являются следующие:

Международная организация стандартизации (МОС) (International Standard Organization — ISO) — является автором стандартов в различных областях деятельности, включая стандарты по телекоммуникациям. Членами ISO являются национальные организации стандартизации. Участие в ISO является добровольным. Наиболее известным стандартом ISO в области телекоммуникаций является эталонная модель взаимодействия открытых систем.

Телекоммуникационный сектор стандартизации Международного союза электросвязи (МСЭ-Т) (Telecommunication Standardization Sector of International Telecommunication Union — ITU-T) — специализированный орган ООН, с 1993 года преемник Международного Консультативного Комитета по Телеграфии и Телефонии (МККТТ) (Comite Consultatif International Telegraphique et Telephonique — CCITT) — международная организация, разрабатывающая стандарты в области связи. Кроме МСЭ-Т в состав МСЭ входят Сектор радиосвязи МСЭ-Р (Radiocommunication Sector — ITU-R) и Сектор развития электросвязи (Telecommunication Development Sector — ITU-D).

Стандарты ITU-T охватывают практически всю область телекоммуникаций.

Институт Инженеров по Электротехнике и Электронике (Institute of Electrical and Electronic Engineers — IEEE) — профессиональная организация, разрабатывающая стандарты для сетей. Стандарты локальных сетей LAN являются наиболее известными стандартами IEEE по телекоммуникациям.

4 стр., 1568 слов

Стандартизация оборудования в области радиосвязи

... организаций, разрабатывающих стандарты оборудования связи. Наиболее известными организациями на сегодняшний день являются Институт инженеров радиоэлектроники и электротехники США (IEЕЕ) и Европейский институт по стандартизации средств связи (ETSI). Деятельность IEEE направлена на разработку стандартов в области ...

Европейский институт стандартизации электросвязи (European Telecommunications Standards Institute — ETSI).

Определяет единую техническую политику в области телекоммуникаций для стран — членов Европейского сообщества. Наиболее известным стандартом ETSI является стандарт сотовой системы подвижной радиосвязи GSM.

Европейская конференция администраций почт и электросвязи (Conference of European Posts and Telegraphs — CEPT).

Европейская ассоциация производителей ЭВМ (European Computer Manufactures Association — ECMA).

Американский Национальный Институт Стандартизации (American National Standard Institute — ANSI) — является координирующим органом добровольных групп по стандартизации в пределах США. ANSI является членом ISO. Широко известным стандартом ANSI по коммуникациям является FDDI.

Ассоциация Телекоммуникационной Промышленности (Telecommunication Industrial Association — TIA) — одна из групп ANSI, выпускающая стандарты по телекоммуникациям. Самым известным стандартом TIA является стандарт сотовой системы подвижной радиосвязи США IS-54.

Ассоциация Электронной Промышленности (Electronic Industrial Association — EIA) — так же одна из групп ANSI.

Федеральная комиссия по связи (Federal Communication Commission — FCC) США. Правительственная организация США, занимающаяся регулированием в отрасли связи, в том числе распределением спектра радиочастот.

Совет по Регуляции Работы Internet (Internet Activities Board — IAB) — Совет определяет основную политику в области глобальной сети Internet. Включает в себя два подкомитета: исследовательский — IRTF ( Internet Reseach Task Forse) и стандартизации — IETF (Internet Engineering Task Forse).

Стандарты IAB называются «Request for Comments» (RFC) (Запрос для комментария).

Производители оборудования телекоммуникаций, заинтересованные в быстром продвижении некоторой конкретной технологии, также создают организации стандартизации в данной области. В качестве примера можно привести такие организации как Форум ATM, Форум Frame Relay, Альянс Gigabit Ethernet и пр.

В нашей стране работы по стандартизации в области связи наряду с Государственным комитетом по стандартизации, метрологии и сертификации (Госстандартом) проводят также Министерство связи РФ и Государственная комиссия по электросвязи (ГКЭС) Минсвязи РФ, Государственная комиссия по распределению частот (ГКРЧ) Минсвязи РФ и Главгоссвязьнадзор России. Наиболее известным стандартом Минсвязи РФ являются «Нормы на электрические параметры каналов ТЧ магистральной и внутризоновых первичных сетей», введенные в действие приказом № 43 от 15 апреля 1996 года.

2. Эталонная модель взаимодействия открытых систем

2.1 Общие положения

В начале 80-х годов ISO признала необходимость создания модели сети, на основе которой поставщики оборудования телекоммуникаций могли создавать взаимодействующие друг с другом сети. В 1984 году такой стандарт был выпущен под названием «Эталонная модель взаимодействия открытых систем» (Open System Interconnect — OSI) или OSI/ISO.

Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений. При рассмотрении конкретных прикладных телекоммуникационных систем производится сравнение их архитектуры с моделью OSI/ISO. Эта модель является наилучшим средством для изучения современной технологии связи.

5 стр., 2450 слов

Особенности систем передачи информации лазерной связи

... математических моделей, решением задач оптимизации структуры сигналов и систем, разработкой новых перспективных алгоритмов передачи, приема, преобразования и обработки информации в оптических информационных системах. Лазерная связь ... на право пользования радиочастотой. Кроме того, невысокий уровень затрат на организацию высокопроизводительного канала связи, а также небольшое время его ввода в ...

Эталонная модель OSI делит проблему передачи информации между абонентами на семь менее крупных и, следовательно, более легко разрешимых задач. Конкретизация каждой задачи производилась по принципу относительной автономности. Очевидно, автономная задача решается легче.

Каждой из семи областей проблемы передачи информации ставится в соответствие один из уровней эталонной модели. Два самых низших уровня эталонной модели OSI реализуются аппаратным и программным обеспечением, остальные пять высших уровней, как правило, реализуются программным обеспечением. Эталонная модель OSI описывает, каким образом информация проходит через среду передачи (например, металлические провода) от прикладного процесса-источника (например, по передаче речи) до процесса-получателя.

Рис. 2.1 Пример связи уровней OSI

В качестве примера связи типа OSI предположим, что Система А на Рис. 2.1 имеет информацию для отправки в Систему В. Прикладной процесс Системы А сообщается с Уровнем 7 Системы А (верхний уровень), который сообщается с Уровнем 6 Системы А, который в свою очередь сообщается с Уровнем 5 Системы А, и так далее до Уровня 1 Системы А. Задача Уровня 1 — отдавать (а также забирать) информацию в физическую среду. После того, как информация проходит через физическую среду и принимается Системой В, она поднимается через слои Системы В в обратном порядке (сначала Уровень 1, затем Уровень 2 и т.д.), пока она, наконец, не достигнет прикладного процесса Системы В.

Каждый из уровней сообщается с выше- и нижестоящими уровнями данной системы. Однако для выполнения присущих уровню задач необходимо сообщение с соответствующим уровнем другой системы, т.е. главной задачей Уровня 1 Системы А является связь с Уровнем 1 Системы В; Уровень 2 Системы А сообщается с Уровнем 2 Системы В и т.д.

Уровневая модель OSI исключает прямую связь между соответствующими уровнями разных систем. Следовательно, каждый уровень Системы А использует услуги, предоставляемые ему смежными уровнями, чтобы осуществить связь с соответствующим ему уровнем Системы В. Нижестоящий уровень называется источником услуг, а вышестоящий — пользователем услуг. Взаимодействие уровней происходит в так называемой точке предоставления услуг. Взаимоотношения между смежными уровнями отдельной системы показаны на Рис. 2.2.

Рис. 2.2 Взаимодействие между уровнями отдельной системы

Обмен управляющей информацией между соответствующими уровнями разных систем производится в виде обмена специальными «заголовками», добавляемыми к полезной информационной нагрузке. Обычно заголовок предшествует фактической прикладной информации. Каждый нижележащий уровень передающей системы добавляет к поступившему от вышележащего уровня информационному блоку свой заголовок с необходимой управляющей информацией для соответствующего уровня другой системы (Рис. 2.3).

Рис. 2.3 Формирование информационных блоков

7 стр., 3035 слов

Проблема измерения информации

... Эти проблемы требовали разработки теории информации как теории передачи сообщений. Одним из основных вопросов был вопрос о возможности измерения информации. По ... же пойдет еще дальше и отнесет к информации и те данные, которые человек не получал с помощью органов ... некоторой системы – это оценка разнообразия в самом широком смысле слова. Любое сообщение между источником и приемником информации имеет ...

В принимающей системе производится анализ данной управляющей информации и удаление соответствующего заголовка перед передачей информационного блока вышележащему уровню. Таким образом, размер информационного блока увеличивается при движении сверху вниз по уровням в передающей системе и уменьшается при движении снизу вверх по уровням в принимающей системе.

Эталонная модель OSI не является реализацией сети. Она только определяет функции протокола каждого уровня.

2.2 Описание уровней эталонной модели OSI

Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для проведения связи.

Прикладной уровень (уровень 7) — это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI. Он обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить процессы передачи речевых сигналов, базы данных, текстовые процессоры и т.д.

Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные процессы, а также устанавливает и согласовывает процедуры устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень (уровень 6) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

Сеансовый уровень (уровень 5) устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними.

Кроме того, сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень (уровень 4).

Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами высших (прикладных) уровней и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень обеспечивает услуги по транспортировке данных, что избавляет высшие слои от необходимости вникать в ее детали. Функцией транспортного уровня является надежная транспортировка данных через сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

8 стр., 3880 слов

Обработка и хранение информации

... любых других более сложных процессах. Это создание информации, ее обработка, хранение и передача (рисунок 3). Технология создания информации заключается в организации и формировании данных, информации и знаний в определённую электронную форму, например, ...

Сетевой уровень (уровень 3) — это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами.

Поскольку две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Канальный уровень (уровень 2) (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень (уровень 1) определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как величины напряжений, параметры синхронизации, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Физической средой в различных телекоммуникационных системах могут быть самые разнообразные средства от простейшей пары проводов до сложной системы передачи синхронной цифровой иерархии. Данный курс лекций посвящен рассмотрению именно физических сред и физического уровня эталонной модели взаимодействия открытых систем.

3. Общие понятия о передаче информации

3.1 Основные определения

Информация — сведения о каких-либо процессах, событиях, фактах или предметах. Известно, что 80..90% информации человек получает через органы зрения и 10..20% — через органы слуха. Другие органы чувств дают в сумме 1..2% информации. Физиологические возможности человека не позволяют обеспечить передачу больших объемов информации на значительные расстояния.

Связь — техническая база, обеспечивающая передачу и прием информации между удаленными друг от друга людьми или устройствами. Аналогия между связью и информацией такая же, как у транспорта и перевозимого груза. Средства связи не нужны, если нет информации, как не нужны транспортные средства при отсутствии груза.

Сообщение — форма выражения (представления) информации, удобная для передачи на расстояние. Различают оптические (телеграмма, письмо, фотография) и звуковые (речь, музыка) сообщения. Документальные сообщения наносятся и хранятся на определенных носителях, чаще всего на бумаге. Сообщения, предназначенные для обработки на ЭВМ, принято называть данными.

Информационный параметр сообщения — параметр, в изменении которого «заложена» информация. Для звуковых сообщений информационным параметром является мгновенное значение звукового давления, для неподвижных изображений — коэффициент отражения, для подвижных — яркость свечения участков экрана.

8 стр., 3596 слов

Измерительные сигналы

... измерительных сигналов устанавливает ГОСТ 16465-94 "Сигналы радиотехнические. Термины и определения". Измерительные сигналы ... сигнал, подлежащий передаче по каналу связи, задается функцией s(t). В канале связи для передачи данного сигнала выделяется определенный диапазон высоких частот. На входе канала связи ... q. Цифровые сигналы ? квантованные по уровню и дискретные по времени сигналы Uц(nT), которые ...

По характеру изменения информационных параметров различают непрерывные и дискретные сообщения.

Сигнал — физический процесс, отображающий передаваемое сообщение. Отображение сообщения обеспечивается изменением какой-либо физической величины, характеризующей процесс. Эта величина является информационным параметром сигнала.

Сигналы, как и сообщения, могут быть непрерывными и дискретными. Информационный параметр непрерывного сигнала с течением времени может принимать любые мгновенные значения в определенных пределах. Непрерывный сигнал часто называют аналоговым. Дискретный сигнал характеризуется конечным числом значений информационного параметра. Часто этот параметр принимает всего два значения. На Рис. 3.1 показаны виды аналогового и дискретного сигналов.

Рис. 3.1 Виды сигналов: а — аналогового, б — дискретного

В дальнейшем будем рассматривать принципы и средства связи, основанные на использовании электрической энергии в качестве переносчиков сообщений, т.е. электрических сигналов. Выбор электрических сигналов для переноса сообщений на расстояние обусловлен их высокой скоростью распространения (около 300 км/мс).

3.2 Общее определение уровней передачи

В технике связи наряду с абсолютными единицами измерения параметров электрических сигналов (мощность, напряжение и ток) широко используются относительные единицы.

Уровнем передачи сигнала в некоторой точке канала или тракта называют логарифмическое преобразование отношения энергетического параметра S (мощности, напряжения или тока) к отсчетному значению этого же параметра.

Правило преобразования определяется формулой:

  • где m — масштабный коэффициент; a — основание логарифма.

Уровни передачи измеряются в децибелах, если справедливы соотношения:

для уровней по мощности

, дБм;

для уровней по напряжению

, дБн;

  • Уровень передачи называется абсолютным, если P0=1 мВт. Если теперь задать R0, то при заданных значениях мощности и сопротивления легко получить соответствующие величины напряжения U0 и тока I0:

; .

При R0= 600 Ом в практических расчетах принимают округленные значения: для U0= 0,775 В, а для I0= 1,29 мА.

Измерительные уровни служат для определения уровней передачи с помощью измерительных приборов, называемых указателями уровня.

Для измерения уровня наиболее часто применяется схема известного генератора, показанная на Рис. 3.2.

Рис. 3.2 Схема известного генератора

В этой схеме ко входу исследуемого объекта, например некоторого четырехполюсника, подключается генератор испытательного сигнала с полностью определенными параметрами, т.е. должно быть известно его выходное сопротивление RГ, развиваемая ЭДС EГ (или напряжение на входе объекта UВХ).

Входное сопротивление объекта RГ также должно быть известно. К выходу объекта подключается указатель уровня с входным сопротивлением, равным номинальному значению сопротивления нагрузки; реальная нагрузка при этом отключается.

В качестве испытательного при измерении уровней передачи чаще всего применяют одночастотный синусоидальный сигнал, частота которого также должна быть известна, а начальная фаза, как правило, не фиксируется.

Если по значению параметров подключенный генератор испытательного сигнала обладает свойством нормального, т.е. его внутреннее сопротивление равно 600 Ом, развиваемая ЭДС равна 1,55 В, то измеренный на сопротивлении RН уровень называется измерительным.

10 стр., 4800 слов

Трехфазный ток. Принцип действия передачи энергии на расстояние

... фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности. Возможность получения в одной установке двух рабочих напряжений -- фазного и линейного, и двух уровней мощности ... и ударяет в колокол с использованием электромагнитных волн, показывая, что сигналы связи ... по применению беспроводной передачи. 1899 : В ...

3.3 Параметры первичных сигналов

Описание сигналов электросвязи некоторым образом необходимо для их адекватной обработки в процессе передачи. Описанием сигнала может служить некоторая функция времени. Определив так или иначе данную функцию, определяем и сигнал. Однако такое полное определение сигнала не всегда требуется. Достаточно описание в виде нескольких параметров, характеризующих основные свойства сигнала с точки зрения его передачи.

Если провести аналогию с транспортированием грузов, то для транспортной сети определяющими параметрами груза являются его масса и габариты. Сигнал также является объектом транспортирования, а техника связи — техникой транспортирования (передачи) сигналов по каналам связи.

Основными первичными сигналами электросвязи являются: телефонный, звукового вещания, факсимильный, телевизионный, телеграфный, передачи данных.

Телефонный (речевой) сигнал. Звуки речи образуются в результате прохождения воздушного потока из легких через голосовые связки и полости рта и носа. Частота импульсов основного тона (f0 на Рис. 3.3) лежит в пределах от 50..80 Гц (бас) до 200..250 Гц (женский и детский голоса).

Импульсы основного тона содержат большое число гармоник (до 40) (2f0,..,nf0 на Рис. 3.3), причем их амплитуды убывают с увеличением частоты со скоростью приблизительно 12 дБ на октаву (кривая 1 на Рис. 3.3).

(Напомним, что октавой называется диапазон частот, верхняя частота которого в два раза выше нижней. Т.о. амплитуда гармоники 2f0 на 12 дБ больше, чем гармоники 4f0 и т.д.).

При разговоре частота основного тона f0 меняется в значительных пределах.

Рис. 3.3 Спектральный состав речевого сигнала

В процессе прохождения воздушного потока из легких через голосовые связки и полости рта и носа образуются звуки речи, причем мощность гармоник частоты основного тона меняется (кривая 2 на Рис. 3.3).

Области повышенной мощности гармоник частоты основного тона называются формантами (см. Рис. 3.3).

Различные звуки речи содержат от двух до четырех формант. Высокое качество передачи телефонного сигнала характеризуется уровнем громкости, разборчивостью, естественным звучанием голоса, низким уровнем помех. Эти факторы определяют требования к телефонным каналам.

Основными параметрами телефонного сигнала являются:

мощность телефонного сигнала PТЛФ. Согласно данным МСЭ-Т средняя мощность телефонного сигнала в точке с нулевым измерительным уровнем на интервале активности составляет 88 мкВт. С учетом коэффициента активности (0,25) средняя мощность телефонного сигнала PСР равна 22 мкВт. Кроме речевых сигналов в канал связи могут поступать сигналы управления, набора номера и пр. С учетом этих сигналов среднюю мощность телефонного сигнала принимают равной 32 мкВт, т.е. средний уровень телефонного сигнала составляет

pСР = 10 lg (32 мкВт/1мВт) = — 15 дБм0;

— коэффициент активности телефонного сообщения, т.е. отношение времени, в течение которого мощность сигнала на выходе канала превышает заданное пороговое значение, к общему времени занятия канала для разговора. При разговоре каждый из собеседников говорит приблизительно 50% времени. Кроме того, отдельные слова, фразы отделяются паузами. Поэтому коэффициент активности составляет 0,25..0,35.

4 стр., 1816 слов

Оптические рефлектометры Оптические измерители мощности

... параметров волоконно-оптических линий связи (ВОЛС). Вместе со стабилизированным источником оптического сигнала их используют для измерения затухания оптических кабелей. Оптические измерители мощности (ОИМ) строятся ... Измерение затухания оптических волокон и оптических кабелей методом обратного рассеяния По осциллограмме (рефлектограмме), полученной на экране оптического рефлектометра (рисунок 3), ...

динамический диапазон определяется выраженным в децибелах отношением максимальной и минимальной мощности сигнала

(дБ).

Динамический диапазон телефонного сигнала составляет DС=35…40 дБ;

пик-фактор сигнала

который составляет 14 дБ. При этом максимальная мощность, вероятность превышения которой исчезающе мала, равна 2220 мкВт (+3,5 дБм0);

  • энергетический спектр речевого сигнала — область частот, в которой сосредоточена основная энергия сигнала (Рис. 3.4)

где — спектральная плотность среднего квадрата звукового давления;

  • порог слышимости (минимальное звуковое давление, которое начинает ощущаться человеком с нормальным слухом на частотах 600..800 Гц);
  • ?f = 1 Гц. Из Рис.3.4 следует, что речь представляет собой широкополосный процесс, частотный спектр которого простирается от 50..100 Гц до 8000..10000 Гц. Установлено, однако, что качество речи получается вполне удовлетворительным при ограничении спектра частотами 300..3400 Гц. Эти частоты приняты МСЭ-Т в качестве границ эффективного спектра речи. При указанной полосе частот слоговая разборчивость составляет около 90%, разборчивость фраз — более 99% и сохраняется удовлетворительная натуральность звучания.

Рис. 3.4 Энергетический спектр речевого сигнала

Сигналы звукового вещания. Источником звука при передаче программ вещания обычно являются музыкальные инструменты или голос человека.

Динамический диапазон вещательной передачи следующий: речь диктора 25..35 дБ, художественное чтение 40..50 дБ, вокальные и инструментальные ансамбли 45..55 дБ, симфонический оркестр до 65 дБ. При определении динамического диапазона максимальным считается уровень, вероятность превышения которого равна 2%, а минимальным — 98%.

Средняя мощность сигнала вещания существенно зависит от интервала усреднения. В точке с нулевым измерительным уровнем средняя мощность составляет 923 мкВт при усреднении за час, 2230 мкВт — за минуту и 4500 мкВт — за секунду. Максимальная мощность сигнала вещания в точке с нулевым измерительным уровнем составляет 8000 мкВт.

Частотный спектр сигнала вещания расположен в полосе частот 15..20000 Гц. При передаче как телефонного сигнала, так и сигналов вещания полоса частот ограничивается. Для достаточно высокого качества (каналы вещания первого класса) эффективная полоса частот должна составлять 0,05..10 кГц, для безукоризненного воспроизведения программ (каналы высшего класса) 0,03…15 кГц.

Факсимильный сигнал формируется методом построчный развертки. Частотный спектр первичного факсимильного сигнала определяется характером передаваемого изображения, скоростью развертки и размерами сканирующего пятна. Для параметров факсимильных аппаратов, рекомендованных МСЭ-Т, верхняя частота сигнала может составлять 732, 1100 и 1465 Гц. Динамический диапазон сигнала составляет около 25 дБ, пик-фактор равен 4,5 дБ при 16 градациях яркости.

9 стр., 4063 слов

Спутниковые системы связи

... В наше время спутниковому вещанию уделяется большое внимание, поэтому мы должны знать принцип работы системы. 1. Принципы организации спутниковых каналов связи Спутниковая связь — один из видов радиосвязи, основанный на использовании искусственных спутников ...

Телевизионный сигнал также формируется методом развертки. Анализ показывает, что энергетический спектр телевизионного сигнала сосредоточен в полосе частот 0..6 МГц. Динамический диапазон DС ? 40 дБ, пик-фактор 4,8 дБ.

Основным параметром дискретного сигнала с точки зрения его передачи является требуемая скорость передачи (бит/с).

Аналогичные параметры определяются и для каналов связи. Параметры каналов связи должны быть не меньше соответствующих параметров сигналов.

Свести параметры аналоговых сигналов к единому параметру (скорости передачи) позволяет преобразование этих сигналов в цифровые (см. подраздел 8.2 «Цифровая обработка аналоговых сигналов»).

3.4 Обобщенная структурная схема систем электросвязи

Система электросвязи — совокупность технических средств и среды распространения, обеспечивающая передачу сообщений. Обобщенная структурная схема систем электросвязи показана на Рис. 3.5

Рис. 3.5 Обобщенная структурная схема систем электросвязи

Сообщение при помощи преобразователя сообщение-сигнал преобразуется в первичный электрический сигнал. Первичные сигналы не всегда удобно (а иногда невозможно) непосредственно передавать по линии связи. Поэтому первичные сигналы при помощи передатчика ПРД преобразуются в так называемые вторичные сигналы, характеристики которых хорошо согласуются с характеристиками линии связи.

Канал связи — совокупность технических устройств (преобразователей) и среды распространения, обеспечивающих передачу сигналов на расстояние.

Каналы и системы связи, использующие искусственную среду распространения (металлические провода, оптическое волокно), называются проводными, а каналы и системы связи, в которых сигналы передаются через открытое пространство — радиоканалами и радиосистемами.