Теплоотдача при кипении жидкостей

Теплоотдача при кипении жидкостей — раздел Образование, Тепловые процессы и аппараты. Виды теплообмена и теплообменных пр. Перенос тепла от одного тела к др Этот Вид Теплоотдачи Отличается Высокой Интенсивностью И Встречается В Химиче…

Этот вид теплоотдачи отличается высокой интенсивностью и встречается в химической технологии, например, при проведении таких процессов как выпаривание, перегонка жидкостей, в испа­рителях холодильных установок и др. Процесс теплоотдачи при кипении очень сложен и еще недостаточно изучен, несмотря на огромное количество проведенных исследований.

Для возникновения кипения необходимо прежде всего, чтобы температура жидкости была выше температуры насыщения, а также необходимо наличие центров парообразования. Различают кипение на поверхности нагрева и кипение в объеме жидкости. Первый вид кипения обусловлен подводом теплоты к жидкости от соприка­сающейся с ней поверхностью. Кипение в объеме жидкости обуслов­лено наличием внутренних источников теплоты или значительного перегрева жидкости, возникающего, например, при внезапном снижении давления (ниже равновесного).

Наиболее важным в химической технологии видом кипения является кипение на по­верхности.

Для передачи теплоты от стенки к кипящей жидкости необходим перегрев стенки относительно температуры насыщения этой жид­кости. На рис. 11-9 показана типичная зависимость коэффициента теплоотдачи и удельной тепловой нагрузки от температурногою5

напора при кипении жидкости Δt= tст —tкіп (tст, tкіп — соответст­венно температура стенки со стороны кипящей жидкости и тем­пература кипения).

В области АВ перегрев жидкости мал (Δt < 5 К), мало также число активных центров парообразования — микровпадин на поверхности стенки, в которых образуются зародыши паровых пузырьков, и интенсивность теплообмена определяется в основном закономерностями теплоотдачи свободной конвекции около нагретой стенки ,При дальнейшем повыше­нии Δt =tст —t увеличивается число активных центров парообра­зования, и коэффициент теплоотдачи резко возрастает (отрезок ВС на рис).

Эту область называют пузырчатым, или ядерным, кипением.

Высокая интенсивность теплообмена при пузырчатом режиме кипения объясняется тем, что турбулизация пограничного слоя у, поверхности стенки пропорциональна числу и объему паровых пузырей, образующихся в микровпадинах на поверхности нагрева. В областях, близких к центрам парообразования), часть жидкости испаряется, образуя паровые пузырьки, которые, поднимаясь и увеличиваясь в объеме, увлекают значительные массы жидкости. На место увлеченной и испарившейся жидкости посту­пают свежие потоки, создавая таким образом интенсивную цирку­ляцию жидкости у поверхности нагрева, что приводит к сущест­венному ускорению процесса теплоотдачи. В точке С коэффициент теплоотдачи достигает максимального значения, соответствующего максимальной удельной тепловой нагрузке (точка О).

При дальнейшем увеличении Δt наблюдается резкое снижение коэффициента теплоотдачи. Оно объясняется тем, что при некотором — критическом — значении Δt = Δtкр происходит коалесценция (слияние) образующихся близко друг от друга пузырьков. При этом величина l на рис. становится меньше диаметра пузырьков пара, и у поверхности стенки возникает паровая пленка, создающая дополнительное термическое сопротивление процессу теплоотдачи. Коэффициент теплоотдачи резко снижается (в десятки раз).

Конечно, образую­щаяся пленка пара нестабильна, она непрерывно разрушается и возникает вновь, но в итоге это серьезно ухудшает теплообмен. Такой режим кипения называют пленочным. Совершенно очевидно, что пленочный режим кипения крайне нежелателен.

Значения температурного напора, коэффициента теплоотдачи и удельной тепловой нагрузки, соответствующие переходу от пузырькового режима к пленочному, называют критическими

Паровой пузырек образуется в мик­ровпадинах поверхности нагрева. Достигнув определенного диаметра do пузырек отрывается от поверхности. На хорошо смачиваемых поверхностях пузырек отрывается от поверхности нагрева, имея форму шара. Поднимаясь, пузырек увеличивается в объеме вследст­вие испарения жидкости внутрь пузырька, сплющивается и приоб­ретает форму гриба со сложной траекторией подъема. При этом происходят непрерывное дробление и коалесценция пузырьков. Момент отрыва пузырьков соответствует состоянию равенства архимедовой силы, действующей на пузырек, и силы поверхност­ного натяжения жидкости, которая удерживает пузырек на стенке. Если принять, что пузырек при образовании на поверхности стенки имеет форму, близкую к сферической, то в момент отрыва величина do выражается зависимостью

где рж и рп — плотность соответственно жидкости и пара; σ поверхностное натяжение жидкости на границе раздела фаз; β-краевой угол смачивания

Таким образом, транспорт теплоты при пузырчатом кипении состоит из переноса теплоты от стенки к жидкости, а затем жидкостью теплота передается внутренней поверхности пузырьков в виде теплоты испарения. Передача теплоты от стенки непосредст­венно к пузырьку ничтожно мала, так как очень мала поверхность касания пузырьков со стенкой, к тому же низка теплопроводность пара. Для того чтобы теплота от жидкости передавалась пузырькам пара, жидкость должна иметь температуру несколько выше темпе­ратуры пара. Поэтому при кипении жидкость несколько перегрета относительно температуры насыщенного пара над поверхностью кипящей жидкости.

Скорость переноса теплоты при кипении зависит от многих разнообразных факторов (физических свойств жидкости, давления, температурного напора, свойств материала поверхности нагрева и многих других), учесть влияние которых на процесс и свести их в единую зависимость крайне сложно. комплекс многих величин, влияющих на интенсивность переноса теплоты при кипении

10. Лучистый теплообмен. Сложный теплообмен.

Это уравнение при коэф.охвата=1. Если излающая поверхность полностью окружает поглощаемую ,

При переносе тепла через газовую среду лучеиспускания относят интенсивность этого переноса при умерен. Т-х осуществляется только в условиях естественной конвекции, т.е. наряду с лучистым теплообменом существует конвективный теплообмен. Суммарная интенсивность переноса тепла . Совместный перенос тепла за счет луч.теплообмена и конвекции наз.сложным теплообменом.

Все темы данного раздела:

Для плоской однослойной стенки принимают условия, то ее толщина во много раз меньше ширины, длины, высоты. В таком случае при стационарном теплообмене поле внутрен. Стенки можно принять одномерным,

Конвективный перенос теплоты происходит в текучих средах: газах, жидкостях, за счет перемещения макрочастиц, имеющих различные термодинамические потенциалы. С ростом скорости движе

Nu= -критерий Нуссельта, выражает отношение общей интенсивности переноса тепла при конвективном теплообмене к интенсивности переноса тепла теплопроводностью в пограничном слое этого теплоносителя.

Nu=f(Pe,Pr,Re,Fo,Gr,…Г1,Г2..) A,n,m,s,p в данном примере коэф. Опред. Методом подбора при обработке опыт. Данных. -коэф. Теплообмена 7.Теплоотдача, не сопровождающаяся

Этот вид теплоотдачи протекает при изменении агрегатного состояния теплоносителей. Особенность этого процесса состоит прежде всего в том, что тепло подводится или отводится при постоянной температу

При непосредственном соприкосновении теплоносителей теплопередача включает в себя теплоотдачу в одном теплоносителе и теплоотдачу во втором теплоносителе.общую интенсивность процесса хар-ют

Дымовые(топочные) газы давно используются в качестве нагревательных агентов. Технология сжигания топочных газов зав. От природа сжигаемого топлива. В кач-ве окислителя обычно используют кисл

Охлаждение до обыкновенных температур (примерно до 10-30 ⁰С) наиболее широко используют доступные и дешевые охлаждающие агента- воздух и воду. По сравнению с воздухом вода отличается большой

Поверочный расчет теплообменника с известной поверхностью теплопередачи заключается, как правило, в определении количества передаваемой теплоты и конечных температур теплоносителей при их заданных

Определение коэф-та теплопередачи проводится в проверочном расчете,который проводится с целью пригодности теплообменника. 1-в соответсвии с выбранным теплообменником определяют реальную сх

В химических производствах обычно не требуется получать чистый конденсат водяного пара для его последующего использования. Поэтому широко распространены конденсаторы смешения, более простые по уст

Выпариванием называется концентрирование растворов практически нелетучих или малолетучих веществ в жидких летучих растворителях. Выпариванию подвергают растворы твердых веществ (водные рас

На выпаривание поступает Gн кг/cек исходного раствора концентрацией xн вес. % и удаляется Gk кг/сек упаренного раствора концентрацией xk

Обычно в однокорпусных выпарных установках известны давления первичного греющего и вторичного паров, а следовательно, опреде­лены и их температуры. Разность между температурами греющего и вторичног

Общая разность температур многокорпусной прямоточной установки представляет собой разность между температурой первичного пара, греющего первый корпус, и температурой вторичного пара, поступающего и

D=расход греющего пара; I ,Iг , Iн , Iк – энтальпия вторичного и греющего пара, исходного и упаренного раствора соответственно; Iп.к = с

Q=D(tD“-tD‘)=Drp(1-α),где D-расход греющего пара; α-влагосодержание пара. Q=GнCн(tкон-tн)+W(tw‘-Cвtкон)+Qпотер±Qконцентр.,где Cв-теплоемкость воды. Экономичность выпарной установ

1-задание должно содержать: прир. р-ра,состав исходного р-ра,его кол-во(расход исходного р-ра, концентрацию р-ренного в-ва(состав)).

Исходя из этих данных можно произвести расчеты материального бал

Технологический расчет многокорпусной вакуум-выпарной установки проводят в следующей последовательности. 1. Вычислив по уравнению общее количество W воды, выпа­риваемой в установке,

Их относят к группе аппаратов, работающих без циркуляции; процесс выпаривания осуществляется за один проход жидкости но кипятильным трубам, причем раствор движется в них в виде восходящей или нисхо

40.Массообменные процессы и аппараты. В химической технологии широко распространены и имеют важ

Десорбцию, или отгонку, т. е. выделение растворенного газа из раствора, проводят одним из следующих способов: 1) в токе инертного газа, 2) выпариванием раствора, 3) в вакууме. Пр

Изменение концентрации в абсорбционном аппарате происходит прямолинейно и следовательно, в координатах У — Х рабочая линия процесса абсорбции представляет собой прямую с углом наклона, тангенс кото

M = Ky·F·∆Yср = Kx·F·∆Xср Увеличение средней движущей силы приводит к увеличению скорости всего процесса, к увеличению растворения и

Широкие распространение в промышленности в качество абсорберов получили насадочные, заполненные насадкой — твердыми телами различной формы. В насадочной колонне (рис.) насадка укладывается на опорн

В тарелках без сливных устройств газ и жидкость проходят через одни и те же отверстия или щели. При этом вместе с взаимодействием фаз на тарелке происходит сток жидкости на нижерасположенную тарелк

Ситчатые тарелки. Газ проходит сквозь отверстия тарелки и распределяется в жидкости ввиде мелких струек и пузырьков. При малых скоростях газа, жидкость может просачиваться через отврстия тар

1-гидравлиеский затвор;2-переливная перегородка;3-тарелка;4-пластины;5-сливной карман. Из струйных тарелок наиболее распространенной является пластинчатая тарелка. Жидкость

Поглощаемый газ называется абсорбатом (абсорбтив), а жидкость, в которой растворяется газ – абсорбентом. Газы, практически нерастворимые, называются инертными. Требования: 1.Селек

Дано: расход жидкой смеси, ее состав(доли веществ в дистилляте, в кубовом остатке. Давление греющего пара, начальная температура смеси. 1) Материальный баланс. Определяем: относит

В качестве сушильного агента могут использоватьсянагретый воздух, топочные газы и их смеси с воздухом, инертные газы, перегретый пар. Если не допускается соприкосновение высушиваем

Барабанная сушилка представляет собой цилиндрический наклонный барабан 4 с двумя бандажами З, которые при вращении барабана катятся по опорным роликам 6. Материал поступает с приподнятого конца бар

В таких аппаратах сушка материала производится периодически при атмосферном давлении. Сушилки имеют одну или несколько прямоугольных камер, в которых материал, находящийся на вагонетках или полках,

Ленточные сушилки. Для непрерывного перемещения в сушилке высушиваемого материала часто применяют один или несколько ленточных транспортеров. В одноленточных аппаратах обыч

Для сушки многих жидких материалов находят применение сушилки, работающие по принципу распыления материала. В распылительных сушилках сушка протекает настолько быстро, что материал не успевает нагр

1.Задание:характеристика материала, его состав, начальная влажность, как высушить , конечная влажность, производительность(расход сырья), место проведения сушки. 2.Выбор природы(вида) суши

Процессы адсорбции могут проводиться периодически(в аппаратах с неподвижным слоем адсорбента) и непрерывно – в аппаратах с движущимся или кипящим слоем адсорбента, а также в аппаратах с неподвижным