Реактивные двигатели и основы тепловой машины

Контрольная работа

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой.

Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла. Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных — волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё более совершенствуя их.

Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» — «сам» и латинского «мобилис» — «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто — мобильный».

Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».

1. Основная часть

1.1 История открытия реактивных двигателей

1. История реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Считающийся первым самолётом «Флайер-1» (конструкции братьев Райт, США, 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет оставалось непременным в авиации. Другие имевшиеся в то время технические решения, например самолёт Можайского (Россия, 1885 год), который имел паровые двигатели, были менее удачными. Авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооружённость самих самолётов.

Однако, к концу Второй мировой войны требование ещё большего повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.

В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз турбины, и вращавшего через зубчатую передачу шампур для жарки мяса. Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году.

9 стр., 4322 слов

По физике Четырехтактные двигатели внутреннего сгорания

... полным объемом цилиндра. Рис 1.2. Схема поршневого двигателя внутреннего сгорания Внутреннее и внешнее смесеобразование. При перемещении поршня в ... четырехтактные, с наддувом и без наддува; по способу смесеобразования – с внешним смесеобразованием (карбюраторные и газовые) и с внутренним ... тепловым двигателем. В 1901 в США был разработан первый трактор с ДВС. Дальнейшее развитие автомобильных ...

В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.

Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД. К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна(Германия), Рене Ледюка (Renй Leduc) (Франция).

В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев,А. М. Люлька и другие. Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков. Самолёт назывался Гу-ВРД. Проект был, отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.

Первый турбореактивный самолёт Heinkel He 178.

Двигатель Jumo-004 — первый в мире крупносерийный ТРД

Немецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в более выгодном положении. Третий рейх планировал войну, и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года).

Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч, но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бомльшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.

Работы по этой тематике неспешно продолжались почти до конца войны, когда. Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких).

29 стр., 14275 слов

История Отечества Авиационная промышленность СССР в годы Великой ...

... работы авиационной промышленности в СССР непосредственно в годы войны; в третьем разделе, разделенном на несколько подразделов, приводится информация о различных видах военной авиации и рассказывается о ... сходство, примерно одинаковые летно-тактические характеристики, одинаковый ресурс двигателя (150 ч), примерно равное вооружение. В документах, касающихся боевого применения истребителей, не ...

После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми.

Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением.

А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, разработанный в КБА. М. Люльки (ныне филиал УМПО).

Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области.

Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения.

Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже).

Первый полёт

Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин,Ю. А. Победоносцев).

В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевыми ПВРД. Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые, а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.

Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРДявляется предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.

В СССР с 1954 по 1960 г в ОКБ-301 под руководством С.А.Лавочкина, разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше трех Махов, и на высоте 17 км. В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.

5 стр., 2392 слов

Использование продукта сгорания природного газа в системах отопления, ...

... сгорания газа почти отсутствуют, их остатки удаляет вентиляционная система. Газовые котлы Если вам нужно обустроить газовое отопление ... газовые емкости для отопления, как баллоны, то отопление будет очень комфортным и экономичным. Достоинства газовой системы отопления Среди очевидных преимуществ газовой системы отопления ... независимость от электрической энергии; от газового нагревателя могут работать ...

Самолёт-снаряд с ПуВРДФау-1. (Музейный экспонат. Надпись на фюзеляже: «Руками не трогать»)

Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасти).

2. Физические основы

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя «рабочего вещества», обычно — раскалённых газов. Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д. Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке — источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на «фазах» работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение — и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно «упакованные». Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания. Подобный переход осуществлялся и во всех других тепловых двигателях, но реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания. После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что- то «двигать», приводить в действие. Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия. Расширяются газы, конечно, и в реактивном двигателе, ведь без этого они не совершают работы. Но работа расширения в том случае не затрачивается на вращение вала, связанного с приводным механизмом, как в других тепловых двигателях. Назначение реактивного двигателя иное — создавать реактивную тягу, а для этого необходимо, чтобы из двигателя вытекала наружу с большой скоростью струя газов — продуктов сгорания: сила реакции этой струи и есть тяга двигателя. Следовательно, работа расширения газообразных продуктов сгорания топлива в двигателе должна быть затрачена на разгон самих же газов. Это значит, что тепловая энергия газов в реактивном двигателе должна быть преобразована в их кинетическую энергию — беспорядочное хаотическое тепловое движение молекул должно замениться организованным их течением в одном, общем для всех направлении. Для этой цели служит одна из важнейших частей двигателя, так называемое реактивное сопло. К какому бы типу не принадлежал тот или иной реактивный двигатель, он обязательно снабжен соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы — продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например, в ракетных или прямоточных двигателях. В других, турбореактивных, — газы сначала проходят через турбину, которой отдают часть своей тепловой энергии. Она расходует в этом случае для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя — через него текут газы, перед тем как покинуть двигатель. Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля).

19 стр., 9072 слов

Воздушно-реактивный двигатель

... («Флайер-1» конструкции братьев Райт США 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет оставалось непременным ... ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо ...

31 стр., 15105 слов

Физическая основа и виды тепловых двигателей

... стали применять энергию течения воды в реках для вращения водяных колес. Эти колеса перекачивали и поднимали воду или приводили в действие различные механизмы. История появления тепловых двигателей уходит ...

Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер

2.1 Классы реактивных двигателей

Воздушно-реактивный двигатель — реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю (РД), но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды — атмосферы, в том числе и окислитель, необходимый для горения топлива. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере: если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего. Следовательно, при одной и той же массе топлива аппарат с ВРД энергетически в несколько раз более обеспечен, чем аппарат с ракетным двигателем, и на активном участке полёта может преодолеть в несколько раз большее расстояние (иногда — в десятки раз).

Ракетные двигатели Ракетные двигатели — реактивный двигатель, источник энергии и рабочее тело которого находится в самом средстве передвижения. Ракетный двигатель — единственный практически освоенный для вывода полезной нагрузки на орбиту искусственного спутника Земли и применения в условиях безвоздушного космического пространства тип двигателя. Другие типы двигателей, пригодные для применения в космосе (например, солнечный парус, космический лифт) пока еще не вышли из стадии теоретической и/или экспериментальной отработки. Сила тяги в ракетном двигателе возникает в результате преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Характеристикой эффективности ракетного двигателя является удельный импульс (в двигателестроении применяют несколько другую характеристику — удельная тяга) — отношение количества движения, получаемого ракетным двигателем, к массовому расходу рабочего тела. Удельный импульс имеет размерность м/c, то есть размерность скорости. Для идеального ракетного двигателя удельный импульс численно равен скорости истечения рабочего тела из сопла. Химический ракетный двигатель. Наиболее распространены химические ракетные двигатели, в которых, в результате экзотермической химической реакции горючего и окислителя (вместе именуемые топливом), продукты сгорания нагреваются в камере сгорания до высоких температур, расширяясь, разгоняются в сверхзвуковом сопле и истекают из двигателя. Топливо химического ракетного двигателя является источником, как тепловой энергии, так и газообразного рабочего тела, при расширении которого его внутренняя энергия преобразуется в кинетическую энергию реактивной струи. В твердотопливном двигателе (РДТТ) горючее и окислитель хранятся в форме смеси твёрдых веществ, а топливная ёмкость одновременно выполняет функции камеры сгорания. В жидкостных ракетных двигателях (ЖРД) горючее и окислитель пребывают в жидком агрегатном состоянии. Они подаются в камеру сгорания с помощью турбонасосной или вытеснительной системами подач. Жидкостные ракетные двигатели допускают регулирование тяги в широких пределах, и многократное включение и выключение, что особенно важно при маневрировании в космическом пространстве.

14 стр., 6968 слов

Воздушно-реактивный двигатель (2)

... первым самолетом («Флайер-1» конструкции братьев Райт США 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет оставалось непременным в авиации. ... как правило, для приведения в движение воздушных летательных аппаратов. принцип работа воздух реактивный двигатель 1. История История ВРД неразрывно связана с историей авиации. Прогресс в ...

2.2 Основы работы тепловой машины

Выясним, какие основные части должна иметь тепловая машина, предназначенная для совершения механической работы A’ за счет количества теплоты Q , полученного при сжигании топлива.

рабочим телом

нагревателем.

Рассмотрим упрощенную модель тепловой машины, состоящую из цилиндра, заполненного воздухом, и поршня (рис. 112).

Поместим на поршень тело массой m , предварительно приняв меры против сжатия газа в цилиндре под действием груза (например, установив специальные упоры внутри цилиндра, предотвращающие дальнейшее опускание поршня).

Расположим под цилиндром нагреватель. По мере нагревания газа в цилиндре его давление возрастает, однако объем остается неизменным до тех пор, пока при некотором значении температуры T2 давление не достигнет значения p2, при котором вес поршня с грузом mg и сила атмосферного давления, равная p 1S , уравниваются с силой давления газа на поршеньp 2S . Этому процессу на диаграмме p , V соответствует изохора АВ .

При дальнейшем нагревании газа поршень придет в движение. Давление поршня с грузом на газ остается постоянным, поэтому расширение происходит по изобарному закону. При подъеме груза на высоту h объем газа в цилиндре увеличивается от V 1 до V 2, температура в конце изобарного процесса расширения газа достигает значения T 3. Этому процессу на диаграмме p, V соответствует изобара ВС.

Когда поршень коснется ограничителя в верхней части цилиндра, снимем груз и прекратим нагревание.

4 стр., 1911 слов

Формирование облика турбовинтового двигателя АИ

... H=0, Мн=0 Рисунок 4 - Влияние температуры газа и способа охлаждения на свободную работу двигателя: 1 - внутреннее конвективное охлаждение; 2 - внутреннее интенсифицированное конвективное охлаждение; 3 - конвективно-пленочное ... К - сечение за компрессором. Г - Г - сечение за камерой сгорания, перед турбиной. Т - Т - сечение на выходе из турбины. С ...

Цель достигнута, груз поднят. Однако подобная машина одноразового действия не представляет интереса для практики. Чтобы поднять другой груз, необходимо опустить поршень, т. е. сжать газ. Но если сжимать газ при температуре T 3 до объемаV 1, то работа, совершаемая при сжатии газа, окажется больше работы, совершенной газом при изобарном расширении. Следовательно, таким путем не удастся осуществить периодический процесс совершения механической работы за счет передачи теплоты от нагревателя рабочему телу машины. реактивный двигатель поршневой роторный

Для уменьшения работы, совершаемой при сжатии газа в цилиндре, его нужно перед сжатием охладить. Тогда сжатие будет происходить при давлении p 1, меньшем p 2, и работа, совершаемая при сжатии, окажется меньше работы, совершенной газом при расширении. Следовательно, для периодической работы тепловой машины необходима еще одна часть машины, называемая холодильником.

3. Типы тепловых двигателей

Двигатель Стирлинга

Двигатель Стирлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от создания разницы температур его цилиндров.

Поршневой двигатель внутреннего сгорания

Двигатель Внутреннего Сгорания или ДВС, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2-х и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860.

В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит либо за четыре хода поршня, за четыре такта, либо за два и двигатели делятся на четырёхтактные и двухтактные. Цикл четырёхтактного двигателя состоит из следующих тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск. В цикле двухтактного двигателя такты рабочего хода и сжатия аналогичны четырёхтактному двигателю, а впуск и выпуск осуществляется одновременно в момент нахождения поршня вблизи от нижней мёртвой точки.

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

5 стр., 2140 слов

Экономическая часть дипломной работы строительство

... страниц. Презентация, представляющая отчет о выполненной дипломной работе и результаты работы. ПЕРЕЧЕНЬ ВОПРОСОВ, ПОДЛЕЖАЩИХ РАЗРАБОТКЕ В ПОЯСНИТЕЛЬНОЙ ЗАПИСКЕ Постановка задачи Общая часть Практическая часть, Экономическая часть, Заключение:, Приложения:, Список используемой литературы, ...

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Идея реактивного и ракетного двигателя состоит в том, чтобы тяга создавалась не винтом, а отдачей выхлопных газов двигателя.

Турбовинтовой двигатель

Турбовинтовой двигатель часть тяги создаёт за счёт винта, другую часть за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен воздушный винт.

Турбореактивный двигатель

Турбореактивный двигатель создаёт тягу за счёт отдачи выхлопных газов. По конструкции он представляет собой газовую турбину (роторный двигатель внутреннего сгорания), на вал которой насажен компрессор, повышающий давление для эффективного сжигания топлива.

Ракетный двигатель , Ракетный двигатель

Твёрдотопливный ракетный двигатель

Твердотопливный ракетный двигатель (РДТТ).

В РДТТ всё топливо в виде заряда помещается в камеру сгорания; двигатель обычно работает непрерывно до полного выгорания топлива.

РДТТ были первыми ракетными двигателями, нашедшими практическое применение. Ракеты с РДТТ (пороховые ракеты) известны уже около 1000 лет; они использовались как сигнальные, фейерверочные, боевые. Описания «огненных стрел» — прототипов пороховых ракет — содержатся в китайских и ЗЮзийских рукописях 10 в. Это оружие представляло собой обычные стрелы, к которым прикреплялись бамбуковые трубки, заполненные порохом. В 1-й половине 17 в. в «Уставе» Анисима Михайлова описываются первые русские ракеты — артиллерийские ядра с каналом, в котором помещался пороховой заряд. В 1798 индийцы применяли боевые ракеты против английских колонизаторов, а в 1807 англичане использовали подобные ракеты в войне с Данией (при осаде Копенгагена).

Первоначально топливом для РДТТ служил дымный порох. В конце 19 в. был разработан бездымный порох, превосходивший дымный по устойчивости горения и работоспособности. В дальнейшем были получены новые высокоэффективные виды твёрдых топлив, что позволило конструировать боевые ракеты с РДТТ самой различной дальности, вплоть до межконтинентальных баллистических ракет.

Твердотельные двигатели

В двигателях этого типа в качестве рабочего тела используется твёрдое тело, а при работе двигателя изменяется не объём рабочего тела, а его форма. Такой двигатель позволяет использовать рекордно малый перепад температур при более высоком КПД.

Дистилляционный двигатель

Существует разработка двигателя с внешним нагревом, в котором ротор в виде пустотелого кольца частично заполнен легко испаряемым твёрдым телом. Незаполненная часть ротора и часть рабочего тела нагреваются, образующийся пар перетекает из нагретой части ротора в не нагретую, нарушая тем самым равновесие ротора в поле силы тяжести. В результате ротор приводится во вращение. Особенностью двигателя является согласованность скорости вращения его ротора со скоростью испарения рабочего тела. Двигатель разработан для осуществления зонной дистилляции с многократным повторением в устройстве с вращающимся контейнером (Патент Украины №78272).

КПД тепловой машины:

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя () и холодильника():

Заключение

ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта

С развитием науки и расширением двигателестроении к концу Второй мировой войны требование ещё большего повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.

В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз турбины), и вращавшего через зубчатую передачу шампур для жарки мяса. Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году. В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.

Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД. К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна(Германия), Рене Ледюка (Renй Leduc) (Франция).

В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев,А. М. Люлька и другие.

Один из ДВС: Дизель оказался более экономичным двигателем, чем бензиновый (к. п. д. около 38 %).

Он может иметь значительно большую мощность.

Дизели ставят на судах (теплоходах), тепловозах, тракторах, грузовых автомобилях, небольших электростанциях.

Большим преимуществом дизеля является то, что он работает на дешевых «тяжелых» сортах топлива, а не на дорогом очищенном бензине. Кроме того, дизели не нуждаются в особой системе зажигания.

Однако в тех случаях, когда требуется минимальный вес двигателя при данной мощности, дизели оказываются менее выгодными.

Литература

[Электронный ресурс]//URL: https://drprom.ru/kontrolnaya/reaktivnyie-dvigateli-i-osnovyi-rabotyi-teplovoy-mashinyi/

1. Дмитриева В.Ф. Физика для профессий и специальностей технического профиля М. «Академия», 2010.

2. Мякишев Г.Я. Физика: учебник для 10 класса общеобразовательных учреждений — М., Просвещение, 2006.- с.366

3. Мякишев Г.Я. Физика: учебник для 11 класса общеобразовательных учреждений — М., Просвещение, 2006.- с.381

4. А.А. Пинский «Физика. 8 класс»

5. А.М. Прохоров «Большой энциклопедический словарь»

6. С.В. Громов, Н.А Родина «Физика.8 класс»