Воздушно-реактивный двигатель

(ВРД) — тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле.

Впервые этот термин в печатной публикации, по-видимому, был использован Б. С. Стечкиным в журнале «Техника Воздушного Флота», где была помещена его статья «Теория воздушного реактивного двигателя» (1929 г.)

В английском языке этому термину наиболее точно отвечает словосочетание air-breathing jet engine (буквально — реактивный двигатель, дышащий воздухом).

Воздушно-реактивные двигатели используются, как правило, для приведения в движение воздушных летательных аппаратов на высотах до 40 км для ТРД, до 55 км для ПВРД и, в теории, до 75 км для ГПВРД (на М25).

[1]


1. История

История ВРД неразрывно связана с историей авиации.

Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Считающийся первым самолетом («Флайер-1» конструкции братьев Райт США 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет оставалось непременным в авиации. Другие имевшиеся в то время технические решения, например самолёт Можайского (Россия 1885 год), который имел паровые двигатели, были менее удачными. Авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооружённость самих самолётов.

Однако, к концу Второй мировой войны требование ещё бо́льшего повышения мощности поршневых ДВС вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. [2] Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.[3]

В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз газовой турбины), и вращавшего через зубчатую передачу шампур для жарки мяса. Первый патент на газотурбинный двигатель был выдан англичанину Джону Барберу в 1791 году. В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.

9 стр., 4455 слов

Реактивные двигатели и основы тепловой машины

... двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам -- компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и ... 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой ... от продолжения этих работ -- бурно развивавшееся ...

Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД. К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна (Германия), Рене Ледюка (René Leduc) (Франция).

В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев, А. М. Люлька и др. В большинстве случаев главным ресурсом этих разработок был энтузиазм разработчиков. Для получения практических результатов необходимы были существенные инвестиции, а инвестиции без обнадёживающих практических результатов никто не решался делать — извечный замкнутый круг всех изобретателей.

Немецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в предпочтительном положении. Третий рейх планировал войну со всем миром, и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах, и достижения оказались соответственными. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года).

Этот самолёт превосходил по скорости (700 км/час) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/час, но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.

Работы по этой тематике неспешно продолжались почти до конца войны, когда Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Но всё это уже не могло спасти Третий рейх от краха. Единственным реактивным самолетом союзников по антигитлеровской коалиции, принимавшим участие во Второй мировой войне, был Глостер Метеор (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла.

После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука [4] , и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми.

29 стр., 14275 слов

История Отечества Авиационная промышленность СССР в годы Великой ...

... в СССР непосредственно в годы войны; в третьем разделе, разделенном на несколько подразделов, приводится информация о различных видах военной авиации ... авиации в послевоенные годы Цель данной работы - показать важность развития авиационной промышленности в годы Второй мировой войны, поскольку она определила дальнейшее развитие авиации в целом. I . Авиационная промышленность накануне ВОВ ...

Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением РД-10.

А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, разработанный в КБ А. М. Люльки (ныне НПО «Сатурн»).

Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области.

Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения.

Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на гиперзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).

В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД, Leduc 010. Далее в течение 10 лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые Leduc 021 и Leduc 022, а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.

Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.

В СССР с 1954 по 1960 гг разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше 3М, и на высоте 17 км. В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Смерть генерального конструктора С. А. Лавочкина в 1960 г окончательно похоронила проект. Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.

14 стр., 6968 слов

Воздушно-реактивный двигатель (2)

... имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука[3], и ... ётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ...

Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).[1]


2. Общие принципы работы ВРД

Несмотря на многообразие ВРД, существенно отличающихся друг от друга конструкцией, характеристиками и областью применения, можно выделить ряд принципов, общих для всех ВРД и отличающих их от тепловых двигателей других типов.

ВРД — как реактивный двигатель.

ВРД — реактивный двигатель , развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю (РД), но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды — атмосферы, в том числе и окислитель, необходимый для горения топлива. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере : если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего[5] , то аппарат, оснащённый ВРД должен иметь на борту только запас горючего. Следовательно, при одной и той же массе топлива аппарат с ВРД энергетически в несколько раз более обеспечен, чем аппарат с ракетным двигателем, и на активном участке полёта может преодолеть в несколько раз большее расстояние (иногда — в десятки раз).

6 стр., 2888 слов

История развития авиационных двигателей

... двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, ... нетрадиционных видах транспорта. 1. История авиационных двигателей История двигателей неразрывно связана с историей ... низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для ...

Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха. Если для полного окисления 1 кг керосина (обычного топлива для ВРД) требуется около 3,4 кг чистого кислорода, то, учитывая, что атмосферный воздух содержит лишь 23 % кислорода по массе, для полного окисления этого горючего требуется 14,8 кг воздуха, и, следовательно, рабочее тело, как минимум, на 94 % своей массы состоит из исходного атмосферного воздуха. На практике в ВРД, как правило, имеет место избыток расхода воздуха (иногда — в несколько раз, по сравнению с минимально необходимым для полного окисления горючего), например, в турбореактивных двигателях массовый расход горючего составляет 1 % — 2 % от расхода воздуха.[6] Это позволяет при анализе работы ВРД, во многих случаях, без большого ущерба для точности, считать рабочее тело ВРД, как на выходе, так и на входе, одним и тем же веществом — атмосферным воздухом, а расход рабочего тела через любое сечение проточной части двигателя — одинаковым.

Динамику ВРД можно представить следующим образом: рабочее тело, поступает в двигатель со скоростью полёта, а покидает его со скоростью истечения реактивной струи из сопла. Из баланса импульса, получается простое выражение для реактивной тяги ВРД:[6]

 общие принципы работы врд 1 (1)

Где — сила тяги, — скорость полёта, — скорость истечения реактивной струи (относительно двигателя), — секундный расход массы рабочего тела через двигатель. Очевидно, ВРД эффективен (создаёт тягу) только в случае, когда скорость истечения рабочего тела из сопла двигателя превышает скорость полёта: .

Скорость истечения газа из сопла теплового реактивного двигателя зависит от химического состава рабочего тела, его абсолютной температуры на входе в сопло, и от степени расширения рабочего тела в сопле двигателя (отношения давления на входе в сопло к давлению на его срезе).

Химический состав рабочего тела для всех ВРД можно считать одинаковым, что же касается температуры, и степени расширения, которые достигаются рабочим телом в процессе работы двигателя — имеют место большие различия для разных типов ВРД и разных образцов ВРД одного типа. Во всяком случае, для каждого ВРД существует некоторая максимальная, специфическая для данного двигателя скорость истечения рабочего тела из сопла, которая ограничивает сверху диапазон скоростей полёта, при которых данный ВРД эффективен.

С учётом вышесказанного можно сформулировать и главные недостатки ВРД в сравнении с РД :

  • ВРД работоспособен только в атмосфере, а РД — в любой среде и в пустоте.
  • ВРД эффективен только до некоторой, специфической для данного двигателя, предельной скорости полёта, а тяга РД не зависит от скорости полёта.
  • ВРД значительно уступает ракетному двигателю в удельной тяге по весу — отношении тяги двигателя к его весу. Например, для ТРД АЛ-31ФП этот показатель равен 9,5, а для ЖРД НК-33 — 128. Из этого следует, что при одной и той же тяге ракетный двигатель в несколько раз (иногда, более чем в десять раз) легче ВРД.

ВРД — как тепловой двигатель

4 стр., 1506 слов

Скорость полета самолета и трубка Пито

... (ПВД). Работа указателя скорости неплохо показана в этом небольшом ролике. На современных летательных аппаратах эти устройства получили новое, более простое и правильное название: приемники воздушного давления (ПВД). Они ...

В основу большинства ВРД как тепловой машины положен цикл Брайтона, в котором сначала происходит адиабатическое сжатие рабочего тела. Потом производится изобарический подвод теплоты за счёт сжигания топлива в камере сгорания. После чего следует адиабатическое расширение во время которого и формируется реактивная струя. Завершает цикл адиабатический отвод теплоты в процессе охлаждения реактивной струи в атмосфере.

Наиболее рациональным является формирование реактивной струи в процессе расширения до достижения статического давления рабочего тела, равного забортному атмосферному давлению. [7] . Таким образом, для ВРД обязательно условие: давление в камере сгорания перед началом фазы расширения рабочего тела должно превышать атмосферное, и чем больше — тем лучше, тем выше полезная работа термогазодинамического цикла и его КПД. Но в окружающей среде, из которой забирается рабочее тело, оно находится при атмосферном давлении. Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в камере сгорания по отношению к атмосферному.

Эффективность ВРД.

Эффективность ВРД определяют несколько КПД или коэффициентов полезного действия.

Эффективность ВРД как теплового двигателя определяет эффективный КПД двигателя.

 общие принципы работы врд 2 (2)

Где Q1 — количество теплоты отданное нагревателем, Q2 — количество теплоты полученное холодильником.

Эффективность ВРД как движителя определяет полётный или тяговый КПД.

 общие принципы работы врд 3 (3)

Сравнивая формулы (1) и (2) можно прийти к выводу, что чем выше разница между скоростью истечения газов из сопла и скоростью полета, тем выше тяга двигателя и тем ниже полетный КПД. При равенстве скоростей полета и истечения газов из сопла полетный КПД будет равен 1, то есть 100 %, но тяга двигателя будет равна 0. По этой причине проектирование ВРД является компромиссом между создаваемой им тягой и его полетным КПД.

Общий или полный КПД ВРД является произведением двух приведеных выше КПД.

(4)

Воздушно-реактивные двигатели можно разбить на две основные группы. ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. И ВРД непрямой реакции, в которых тяга кроме или вместо реактивной струи создается посредством использования специального движителя, например пропеллера или несущего винта вертолета. Применяется также классификация по признаку наличия механического воздушного компрессора в тракте двигателя: в этом случае ВРД подразделяются на бескомпрессорные (ПВРД с его вариантами, ПуВРД с его вариантами) — и компрессорные, где компрессор приводится от газовой турбины — ТРД, ТРДД, ТВД с их вариантами, а также мотокомпрессорный воздушно-реактивный двигатель, в котором компрессор приводится не от турбины, а от отдельного двигателя внутреннего сгорания (с воздушным винтом или без него).

5 стр., 2067 слов

Газотурбинный двигатель

... скорость самолётов, оснащённых ТВД, 600—800 км/ч. 3.1. Турбовальный двигатель Турбовальный двигатель (ТВаД) — газотурбинный двигатель, ... ротора высокого давления. 2. Турбореактивный двигатель В полёте поток воздуха тормозится во входном устройстве перед ... трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки ...


3. Прямоточный воздушно-реактивный двигатель

3.1. Принцип действия и устройство ПВРД

Прямоточный воздушно-реактивный двигатель (ПВРД англоязычный термин — Ramjet) является самым простым в классе ВРД по устройству. Необходимое для работы двигателя повышение давления достигается за счёт торможения встречного потока воздуха.

Рабочий процесс ПВРД кратко можно описать следующим образом:

  • Воздух, поступая со скоростью полёта во входное устройство двигателя, затормаживается (на практике, до скоростей 30 — 60 м/сек, что соответствует числу Маха 0,1 — 0,2), его кинетическая энергия преобразуется во внутреннюю энергию — его температура и давление повышаются.
В предположении того, что воздух — идеальный газ, и процесс сжатия является изоэнтропийным, степень повышения давления (отношение статического давления в заторможенном потоке к атмосферному) выражается уравнением: [6]

 прямоточный воздушно реактивный двигатель 1 (5)
где — давление в полностью заторможенном потоке;
— атмосферное давление;
 прямоточный воздушно реактивный двигатель 2 — полётное число Маха (отношение скорости полёта к скорости звука в окружающей среде),
— показатель адиабаты, для воздуха равный 1,4.
На выходе из входного устройства, при входе в камеру сгорания рабочее тело имеет максимальное на всём протяжении проточной части двигателя давление.
  • Сжатый воздух в камере сгорания нагревается за счёт окисления подаваемого в неё топлива, внутренняя энергия рабочего тела при этом возрастает.
  • Затем сначала сужаясь в сопле достигает звуковой скорости, а потом расширяясь — сверхзвуковой, рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создаёт реактивную тягу.

Конструктивно ПВРД имеет предельно простое устройство. Двигатель состоит из камеры сгорания, в которую из диффузора поступает воздух, а из топливных форсунок — горючее. Заканчивается камера сгорания входом в сопло, как правило, суживающееся-расширяющееся.

С развитием технологии смесевого твёрдого топлива, оно стало применяться в ПВРД. Топливная шашка с продольным центральным каналом размещается в камере сгорания. Рабочее тело, проходя по каналу, постепенно окисляет топливо с его поверхности, и нагревается само. Использование твёрдого топлива ещё более упрощает конструкцию ПВРД: ненужной становится топливная система. Состав смесевого топлива для ПВРД отличается от используемого в РДТТ. Если для ракетного двигателя большую часть топлива составляет окислитель, то для ПВРД он добавляется лишь в небольшом количестве для активизации процесса горения. Основную часть наполнителя смесевого топлива ПВРД составляет мелкодисперсный порошок алюминия, магния или бериллия, теплота окисления которых значительно превосходит теплоту сгорания углеводородных горючих. Примером твёрдотопливного ПВРД может служить маршевый двигатель противокорабельной крылатой ракеты П-270 Москит.

9 стр., 4322 слов

По физике Четырехтактные двигатели внутреннего сгорания

... двигатель внутреннего сгорания, которому в будущем суждено было вытеснить громоздкие и куда менее эффективные паровые машины. Правда, одноцилиндровый, работавший на смеси светильного газа с воздухом, двигатель ... по способу осуществления рабочего цикла – двухтактные и четырехтактные, с наддувом и без наддува; по способу смесеобразования ... первый самолёт с ДВС, начавший свои полёты в 1903. В том же 1903 ...

Зависимость тяги ПВРД от скорости полёта определяется несколькими факторами:

  • Чем выше скорость полёта, тем больше расход воздуха через тракт двигателя, а значит, и количество кислорода, поступающего в камеру, что позволяет, увеличив расход горючего, повысить тепловую, а вместе с ней и механическую мощность двигателя.
  • Чем больше расход воздуха через тракт двигателя, тем выше создаваемая им тяга, в соответствии с формулой (1).

    Однако расход воздуха через тракт двигателя не может расти неограниченно. Площадь каждого сечения двигателя должна быть достаточной для обеспечения необходимого расхода воздуха.

  • С увеличением скорости полёта, в соответствии с формулой (6), возрастает степень повышения давления в камере сгорания, что влечёт за собой увеличение термического коэффициента полезного действия двигателя, который для идеального ПВРД выражается формулой:[6]

 прямоточный воздушно реактивный двигатель 3 (3)
  • В соответствии с формулой (1), чем меньше разница между скоростью полёта и скоростью истечения реактивной струи, тем меньше тяга двигателя (при прочих равных условиях).

В общем, зависимость тяги ПВРД от скорости полёта, может быть представлена следующим образом: пока скорость полёта значительно ниже скорости истечения реактивной струи, тяга растёт с ростом скорости полёта (вследствие повышения расхода воздуха, давления в камере сгорания и термического КПД двигателя), а с приближением скорости полёта к скорости истечения реактивной струи, тяга ПВРД падает, миновав некоторый максимум, соответствующий оптимальной скорости полёта.

В зависимости от скорости полёта ПВРД подразделяются на дозвуковые , сверхзвукрвые и гиперзвуковые . Это разделение обусловлено конструктивными особенностями каждой из этих групп.


3.1.1. Дозвуковые ПВРД

Дозвуковые ПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре .

Эти двигатели характеризуются крайне низкой эффективностью. При полёте на скорости М=0,5 степень повышения давления в них (как следует из формулы (2)) равна 1,186, вследствие чего их идеальный термический КПД (в соответствии с формулой (3)) составляет всего 4,76 %, а с учётом потерь в реальном двигателе эта величина становится почти равной 0. Это означает, что на скоростях полёта при M<0,5 ПВРД неработоспособен. Но и на предельной для дозвукового диапазона скорости, при М=1 степень повышения давления составляет 1,89, а идеальный термический КПД — 16,7 %, что в 1,5 раза меньше чем у реальных поршневых ДВС, и вдвое меньше, чем у газотурбинных двигателей. К тому же, и поршневые, и газотурбинные двигатели эффективны при работе на месте.

По этим причинам дозвуковые прямоточные двигатели оказались неконкурентоспособными в сравнении с авиадвигателями других типов и в настоящее время серийно не выпускаются.

5 стр., 2233 слов

Виды реактивных двигателей, физические основы реактивного движения ...

... приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем ... современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", ...


3.1.2. Сверхзвуковые ПВРД (СПВРД)

СПВРД предназначены для полётов в диапазоне 1 < M < 5.

Торможение сверхзвукового газового потока происходит всегда разрывно (скачкообразно) — с образованием ударной волны, называемой также скачком уплотнения [8] Процесс сжатия газа на фронте ударной волны не является изоэнтропийным, вследствие чего в нём имеют место необратимые потери механической энергии, и степень повышения давления в нём меньше, чем в идеальном — изоэнтропийном процессе. Чем интенсивнее скачок уплотнения, то есть чем больше изменение скорости потока на его фронте, — тем больше потери давления, которые могут превышать 50 %.

Потери давления удаётся минимизировать за счёт организации сжатия не в одном, а в нескольких (обычно, не более 4-х) последовательных скачках уплотнения меньшей интенсивности, после каждого из которых (кроме последнего), скорость потока снижается, оставаясь сверхзвуковой. Это возможно, если все скачки (кроме последнего) являются косыми , фронт которых наклонён к вектору скорости потока. (Косой скачок уплотнения образуется, когда сверхзвуковой поток встречается с препятствием, поверхность которого наклонена к вектору скорости воздушного потока.) В промежутках между скачками параметры потока остаются постоянными. В последнем скачке (всегда прямом — нормальном к вектору скорости воздушного потока) скорость становится дозвуковой и дальнейшее торможение и сжатие воздуха происходит непрерывно в расширяющемся канале диффузора.

В случае, если входное устройство двигателя находится в зоне невозмущённого потока, например, в носовом окончании летательного аппарата, или на консоли на достаточном удалении от фюзеляжа, оно исполняется осесимметричным и снабжается центральным телом — длинным острым «конусом», выступающим из обечайки, назначение которого состоит в создании во встречном потоке системы косых скачков уплотнения, обеспечивающих торможение и сжатие воздуха ещё до поступления его в канал входного устройства — т. н. внешнее сжатие . Такие входные устройства называются также устройствами конического течения , потому что поток воздуха в них имеет коническую форму. Коническое центральное тело может быть снабжено механическим приводом, позволяющим перемещаться ему вдоль оси двигателя, оптимизируя тем самым торможение воздушного потока на различных скоростях полета. Такие входные устройства именуются регулируемыми.

При установке двигателя на нижней (боковой) стенке фюзеляжа, или под крылом летательного аппарата, то есть в зоне аэродинамического влияния его элементов, обычно применяются плоские входные устройства двухмерного течения , имеющие прямоугольное поперечное сечение, без центрального тела. Система скачков уплотнения в них обеспечивается благодаря внутренней форме канала. Они называются также устройствами внутреннего или смешанного сжатия , так как внешнее сжатие частично имеет место и в этом случае — в скачках уплотнения, образованных у носового окончания и/или у передней кромки крыла летательного аппарата. Регулируемые входные устройста прямоугольного сечения имеют меняющие свое положение клинья внутри канала.

В сверхзвуковом диапазоне скоростей ПВРД значительно более эффективен, чем в дозвуковом. Например, на скорости М=3 для идеального ПВРД степень повышения давления по формуле (2) составляет 36,7, что сравнимо с показателями самых высоконапорных компрессоров турбореактивных двигателей, а термический КПД теоретически (по формуле (3)) достигает 64,3 %. У реальных ПВРД эти показатели ниже, но даже с учётом потерь, в диапазоне полётного числа Маха от 3 до 5 СПВРД превосходят по эффективности ВРД всех других типов.

При торможении встречного потока воздуха он не только сжимается, но и нагревается, и его абсолютная температура при полном торможении (в изоэнтропийном процессе) выражается формулой: [6]

 прямоточный воздушно реактивный двигатель 4
где  прямоточный воздушно реактивный двигатель 5 — температура невозмущённого потока.

При М=5 и Т o =273°K (что соответствует 0 °C) температура заторможенного рабочего тела достигает 1638°К, при М=6 — 2238°К, а с учётом трения и скачков уплотнения в реальном процессе — ещё выше. При этом дальнейший нагрев рабочего тела за счёт сжигания топлива становится проблематичным из-за ограничений, накладываемых термической устойчивостью конструкционных материалов, из которых изготовлен двигатель. Потому скорость, соответствующая М=5 считается предельной для СПВРД


3.1.3. Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД)

Гиперзвуковым ПВРД (ГПВРД, англоязычный термин — Scramjet) называется ПВРД, работающий на скоростях полёта свыше 5М, (верхний предел точно не устанавливается).

На начало XXI в. этот тип двигателя является гипотетическим: не существует ни одного образца, прошедшего лётные испытания, подтвердившие практическую целесообразность его серийного производства.

Торможение потока воздуха во входном устройстве ГПВРД происходит лишь частично, так что на протяжении всего остального тракта движение рабочего тела остается сверхзвуковым. При этом бо́льшая часть исходной кинетической энергии потока сохраняется, а температура после сжатия относительно низка, что позволяет сообщить рабочему телу значительное количество тепла. Проточная часть ГПВРД расширяется на всём её протяжении после входного устройства. Горючее вводится в сверхзвуковой поток со стенок проточной части двигателя. За счёт сжигания горючего в сверхзвуковом потоке рабочее тело нагревается, расширяется и ускоряется, так что скорость его истечения превышает скорость полёта.

Двигатель предназначен для полётов в стратосфере. Возможное назначение летательного аппарата с ГПВРД — низшая ступень многоразового носителя космических аппаратов.

Организация горения топлива в сверхзвуковом потоке составляет одну из главных проблем создания ГПВРД.

Существует несколько программ разработок ГПВРД в разных странах, все — в стадии теоретических изысканий или предпроектных экспериментов.


3.2. Область применения ПВРД

ПВРД неработоспособен при низких скоростях полёта, тем более — при нулевой скорости. Для достижения начальной скорости, при которой он становится эффективным, аппарат с этим двигателем нуждается во вспомогательном приводе, который может быть обеспечен, например, твёрдотопливным ракетным ускорителем, или самолётом-носителем, с которого запускается аппарат с ПВРД.

Неэффективность ПВРД на малых скоростях полёта делает его практически неприемлемым для использования на пилотируемых самолётах [9] , но для беспилотных, боевых, крылатых ракет одноразового применения, летающих в диапазоне скоростей 2 < M < 5, благодаря своей простоте, дешевизне и надёжности, он предпочтителен. Так же ПВРД используются в летающих мишенях. Основным конкурентом ПВРД в этой нише является ракетный двигатель.

  • Образцы крылатых ракет с маршевыми ПВРД.


3.3. Ядерный ПВРД

Во второй половине 50-х годов ХХв, в эпоху холодной войны В США и СССР разрабатывались проекты ПВРД с ядерным реактором.

Источником энергии этих двигателей (в отличие от остальных ВРД) является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором, размещённым на месте камеры сгорания. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждает его и нагревается сам до температуры около 3000 К, а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных жидкостных ракетных двигателей. Назначение летательного аппарата с таким двигателем — межконтинентальная крылатая ракета — носитель ядерного заряда. В обеих странах были созданы компактные малоресурсные ядерные реакторы, которые вписывались в габариты большой ракеты. В США по программам исследований ядерного ПВРД «Pluto» и «Tory» в 1964 были проведены стендовые огневые испытания ядерного прямоточного двигателя «Tory-IIC» (режим полной мощности 513 мегаватт в течение пяти минут с тягой 156 kN).

Лётные испытания не проводились, программа была закрыта в июле 1964. Одной из причин можно назвать совершенствование конструкции баллистических ракет с традиционными химическими ракетными двигателями, которые вполне обеспечили решение боевых задач без применения схем с ядерными ПВРД.


4. Турбореактивный двигатель

4.1. Принцип действия и устройство ТРД

В турбореактивном двигателе (ТРД, англоязычный термин — turbojet engine) сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы.

Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД (Jumo-004) этот показатель составлял 3, то у современных он достигает 40 (General Electric GE90).

Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными . Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления).

Каскады двигателя также именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.

Первичный воздух — поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической.

Вторичный воздух — поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.

Третичный воздух — поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.

Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя самолёта является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

  • Температура, которую может выдерживать турбина, ограничена, что накладывает ограничение на количество тепловой энергии, подводимой к рабочему телу в камере сгорания, а это ведёт к уменьшению работы, производимой им при расширении.
Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.
  • Турбина поглощает часть энергии рабочего тела перед поступлением его в сопло.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что (в соответствии с формулой (1)) ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями 2,5—3М. На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M>3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.


4.1.1. Форсажная камера

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных форсажной камерой , расположенной между турбиной и соплом. В режиме форсажа в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолетов Ту-144 и Конкорд, полеты которых уже прекратились.


4.1.2. Гибридный ТРД / ПВРД

В 60-х годах XX века в США был создан гибридный ТРД / ПВРД Pratt & Whitney J58, использовавшийся на стратегическом разведчике SR-71 Blackbird. До скорости М=2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М=3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.


4.1.3. Регулируемые сопла

ТРД самолетов летающих на сверхзвуковых скоростях оборудуются так называемыми регулируемыми соплами . Эти сопла состоят из продольных элементов, называемых створками , подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях.[2]


4.2. Область применения ТРД

ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолетов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытеснеными более экономичными двухконтурными ТРД (ТРДД).

  • Образцы летательных аппаратов, оборудованных ТРД


5. Двухконтурный турбореактивный двигатель

На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя (авторское свидетельство вручили 22 апреля 1941 года).

В основу двухконтурных ТРД (далее — ТРДД), в англоязычной литературе — Turbofan , положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности, то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур.

m = G 2 / G 1

Где G 1 и G 2 расход воздуха через внутренний и внешний контуры соответственно.

Если вернуться к формулам (1) и (4) то принцип присоединения массы можно истолковать следующим образом. В ТРДД, согласно формуле (4) заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое, согласно формуле (1), вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности — тем большего диаметра будет двигатель при прочих равных условиях.

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М.

Все ТРДД можно разбить на 2 группы: со смешением потоков за турбиной и без смешения.

В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя.

Например, длина ТРДД АИ-25, устанавливаемого на самолете Як-40 — 2140 мм, а ТРДДсм АИ-25ТЛ, устанавливаемого на самолете L-39 — 3358 мм.

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.


5.1. Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Специальные поворотные сопла, на некоторых ТРДД, позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолетом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолета при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.


5.2. ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Порою в популярной литературе ТРДД с высокой степенью двухконтурности (выше 2) называют турбовентиляторными. В англоязычной литературе этот двигатель называется turbofan с добавлением уточнения high bypass (высокая двухконтурность), сокращённо — hbp. ТРДД с высокой степенью двухконтурности выполняются, как правило, без камеры смешения. По причине большого входного диаметра таких двигателей их сопло внешнего контура достаточно часто делают укороченным с целью снижения массы двигателя.


5.3. Область применения ТРДД

Можно сказать, что с 1960-х и по сей день в самолетном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространенным классом ВРД, используемых на самолетах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью до гигантских коммерческих и военно-транспортных самолетов с ТРДД с высокой степенью двухконтурности.


6. Винтовентиляторный двигатель

У винтовентиляторного двигателя поток холодного воздуха создаётся двумя соосными, вращающимися в противоположных направлениях, многолопастными саблевидными винтами, приводимыми в движение от турбины через редуктор. Степень двухконтурности таких двигателей достигает 90.

На сегодня известен лишь один серийный образец двигателя этого типа — Д-27 (ЗМКБ «Прогресс» им. академика А. Г. Ивченко, г. Запорожье, Украина.), использовавшийся на самолёте Як-44 с крейсерской скоростью полёта 670 км/ч, и на Ан-70 с крейсерской скоростью 750 км/ч.


7. Турбовинтовой двигатель (ТВД)

Турбовинтовые или турбовальные двигатели (ТВД) относятся к ВРД непрямой реакции. Конструктивно ТВД схож с ТРД, в котором мощность, развиваемая последним каскадом турбины, передаётся на вал воздушного винта (обычно через редуктор).

Этот двигатель не является, строго говоря, реактивным (реакция выхлопа турбины составляет не более 10 % его суммарной тяги), однако традиционно их относят к ВРД.

Турбовинтовые двигатели используются в транспортной и гражданской авиации при полётах с крейсерскими скоростями 400—800 км/ч.

Вариант этого двигателя с вертикальным выходным валом редуктора используется для привода винтов вертолётов, такие двигатели называют также турбовальными .


8. Пульсирующий воздушно-реактивный двигатель

8.1. Принцип действия и устройство ПуВРД

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц — для малых двигателей, предназначенных для авиамоделей. [10]

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра [11] . Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее — оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды — малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламененяется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) — ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу).

    В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме , ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД — его работа описывается циклом Хамфри (Humphrey), в то время как работа ПВРД и ТРД описывается циклом Брайтона.

  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автоколебания становятся устойчивыми, а амплитуда колебаний каждого элемента — максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно — это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи — поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска [12] ).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла. [13]


8.2. Другие пульсирующие ВРД

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД , иначе — U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеры, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД — их низкой долговечности (на самолёте-снаряде Фау-1 клапаны прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).

  • Детонационные ПуВРД. (англоязычное название PDE) В этих двигателях горение топливной смеси происходит в режиме детонации (в отличие от дефлаграции, которая имеет место при горении топливно-воздушных смесей во всех ВРД, рассмотренных выше).

    Детонационная волна распространяется в топливной смеси гораздо быстрее, чем звуковая, поэтому, за время химической реакции детонационного горения объём топливной смеси не успевает существенно увеличиться, а давление возрастает скачкообразно (до значений свыше 100 ат), таким образом имеет место изохорический (при постоянном объёме) нагрев рабочего тела. После этого начинается фаза расширения рабочего тела в сопле с образованием реактивной струи. Детонационные ПуВРД могут быть как с клапанами, так и без них.

Потенциальным преимуществом детонационного ПуВРД считается термический КПД более высокий, чем в ВРД любого другого типа. Практическая реализация этого двигателя находится в стадии эксперимента [15] .


8.3. Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный , зато простой и дешёвый . Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД — следствие неполного сгорания топлива в камере.

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС, поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой).

При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

По простоте и дешевизне ПВРД практически не уступает ПуВРД, но на скоростях менее 0,5М он неработоспособен. На более высоких скоростях, ПВРД превосходит по эффективности ПуВРД (при закрытом клапане резко возрастает лобовое сопротивление ПуВРД и на околозвуковых скоростях оно «съедает» почти всю тягу, создаваемую этим двигателем).

Совокупность этих обстоятельств и определяют ту нишу, в которой находит применение ПуВРД — беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5М,— летающие мишени, беспилотные разведчики. [16]

Клапанные, так же, как и бесклапанные, ПуВРД имеют распространение в любительской авиации и авиамоделировании, благодаря простоте и дешевизне.


9. Основные характеристики ВРД

Основные параметры характеризующие двигатели следующие.

  1. Тяга для двигателей прямой реакции / мощность для двигателей непрямой реакции.
  2. Масса.
  3. Габариты (входной диаметр и длина по оси).

  4. Удельный расход топлива. (отношение расхода топлива за единицу времени к создаваемой двигателем тяге/мощности).

  5. Расход воздуха.
  6. Степень повышения полного давления.
  7. Температура газа перед турбиной.

10. Некоторые распространенные заблуждения, связаные с ВРД

  1. Двигатель отталкивается от воздуха турбинами. На самом деле, турбина это только привод компрессора и вентилятора.
  2. Тяга создается в сопле. Если бы тягу создавало только сопло — остальные части двигателя были бы не нужны. Тягу создает весь двигатель.
  3. Рёв турбин. ВРД создают немало шума, однако турбина — один из самых «тихих» узлов двигателя. основную часть шума создают компрессор, вентилятор, воздушные винты, сопло.
  4. Инверсионный след — это реактивный след. Инверсионный след не имеет ни малейшего отношения непосредственно к реактивным двигателям. Это — результат взаимодействия частичек сгоревшего топлива и (или) поверхностей самолёта с атмосферным воздухом.


Примечания

  1. Scramjet — www.orbitalvector.com/Orbital Travel/Scramjets/Scramjets.htm «Advanced turbojets have an extreme operational ceiling of about 40 km, while ramjets have a ceiling of about 55 km. Scramjets can operate up to 75 km high without fear of stalling.»
  2. Совершенствование авиационных поршневых ДВС шло по пути повышения степени сжатия, что позволяло увеличивать удельную мощность двигателя (мощность на килограмм массы).

    Однако, повышение степени сжатия влечёт повышение температуры и давления рабочего тела, а вместе с тем растёт нагрев двигателя и обостряется проблема его охлаждения. На заре авиации использовалось воздушное охлаждение двигателей, затем, (в конце 1930-х годов) стали переходить на водяное, а к концу 1940-х — в качестве теплоносителя системы охлаждения в некоторых случаях использовался металлический натрий. Но возможности и этих систем охлаждения, в конце концов, были исчерпаны и дальше повышать мощность поршневого ДВС можно было только за счёт увеличения рабочего объёма цилиндров и, следовательно, размеров и массы двигателя.

  3. Имеется в виду «большая авиация». В «малой» поршневые ДВС используются и сегодня.
  4. Поскольку тяга поршневого ДВС создаётся воздушным винтом, самолёт с таким двигателем в принципе не может достичь сверхзвуковой скорости в горизонтальном полёте, так как на участке волнового кризиса воздушный винт становится недейственным.
  5. Отношение массы чистого кислорода к массе горючего при полном его окислении составляет: для этанола — 2,1; керосина, октана или ацетилена — 3,4; метана — 4; водорода — 8.
  6. 1 2 3 4 5 Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  7. В сверхзвуковых соплах реактивных двигателей давление рабочего тела при истечении может опускаться и ниже атмосферного — так называемый режим перерасширения . При проектировании ВРД его стараются избегать, поскольку он приводит к снижению тяги.
  8. Г. Н. Абрамович ПРИКЛАДНАЯ ГАЗОВАЯ ДИНАМИКА. Издание 4-е. ИЗДАТЕЛЬСТВО «НАУКА». ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ. МОСКВА 1976.
  9. Начиная с Leduc 021 (Франция 1950г) по настоящее время было создано около десятка экспериментальных самолётов с ПВРД (главным образом, в США), в серийное производство так и не поступивших, за исключением SR-71 Blackbird с гибридным ТРД/ПВРД Pratt & Whitney J58, выпущенного в количестве 32 изделий.
  10. Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
  11. Устройство и работу серийного клапанного ПуВРД модели «ДайнаДжет» можно подробно увидеть в видеофильме — www.youtube.com/watch?v=IJqkHJ2zWPY.
  12. См. видео — www.gaz24.ru/v-1.mpg о запуске V-1 с катапульты.
  13. ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
  14. Иллюстрированное описание нескольких конструкций бесклапанных ПуВРД (на английском) — www.pulse-jets.com/valveless/index.htm
  15. Видеозаписи испытаний экспериментальных детонационных ПуВРД. — www.youtube.com/watch?v=rYxsilgRxi4
  16. Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.


Литература

[Электронный ресурс]//URL: https://drprom.ru/kursovaya/vozdushnyie-dvigateli/

  • Стечкин Б. С. Избранные труды. Теория тепловых двигателей. — М.: Наука, 1977. — 410 с.
  • Казанджан П. К., Алексеев Л. П., Говоров А. Н., Коновалов Н. Е., Ю. Н. Нечаев, Павленко В. Ф., Федоров Р. М. Теория реактивных двигателей. М. Воениздат. 1955
  • В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  • Кулагин В. В. Теория, расчёт и проектирование авиационных двигателей и энергетических установок. Изд. 2-е. М. Машиностроение. 2003.
  • Клячкин А. Л., Теория воздушно-реактивных двигателей, М., 1969

Данный реферат составлен на основе .