Анализ аварийности на объектах трубопроводного транспорта (нефть, нефтепродукты)

Именно безаварийная работа системы трубопроводов позволяет доставить весь объем добытой нефти для переработки и далее до потребителя без повышения ее себестоимости. В то же время, согласно статистике, количество отказов на промысловых трубопроводах остается довольно высоким. Это связано в первую очередь с коррозионным износом трубопроводов.

Стоит отметить, что отказы на промысловых трубопроводах пересекающих водные преграды, наносят большой экономический ущерб не только из-за потерь продукта, но и сопровождаются, в большинстве случаев загрязнением окружающей среды, гибелью флоры и фауны, возникновением пожаров и даже человеческими жертвами.

Поэтому к трубопроводам предъявляются очень высокие требования, одним из которых является герметичность.

Среди условий, обеспечивающих избегание неприятных последствий аварийных отказов, важное место принадлежит своевременному и качественному проведению профилактических мероприятий.

Цель исследования: провести анализ аварийности на объектах трубопроводного транспорта (нефть, нефтепродукты).

Задачи исследования:

1. Дать классификацию аварий.

4. Сделать выводы по проделанной работе.

1. Классификация аварий

Отказом трубопроводов промыслового сбора и транспорта продукции скважин считается нарушение работоспособности, связанное с внезапной полной или частичной остановкой трубопровода из-за нарушения герметичности трубопровода или запорной и регулирующей арматуры или из-за закупорки трубопровода.

Повреждением называется нарушение исправного состояния ПТ при сохранении его работоспособности и не сопровождаемое материальным и экологическим ущербом.

Отказы ПТ делятся на некатегорийные и категорийные, сопровождаемые несчастными случаями и пожарами.

К категорийным относятся отказы, которые расследуются в соответствии с инструкцией Госгортехнадзора России (РД 03-293-99 «Положение о порядке технического расследования причин аварий на опасных производственных объектах»).

К ним относится полное или частичное разрушение объектов добычи и подготовки нефти и газа, внутрипромысловых трубопроводов, сопровождающееся или приведшее к разливу (утечке) нефти в объеме 10 и более кубометров или утечкой природного (попутного) газа в объеме 10 тысяч и более кубометров.

16 стр., 7996 слов

Аварии на опасном производственном объекте. Применение антидотов при отравлении

... в техническом расследовании причин аварии на опасном производственном объекте, принимает меры по устранению причин и недопущению подобных аварий. 4. Осуществляет мероприятия по локализации и ликвидации последствий аварий на опасном производственном объекте. 5. Принимает меры по ...

Все остальные отказы некатегорийные расследуются в соответствии с РД 39-132-94 «Правила по эксплуатации, ревизии, ремонту и отбраковке нефтепромысловых трубопроводов» [2].

Некатегорийные отказы подразделяются по видам нарушений:

  • разрывы и трещины по основному металлу труб, по продольным и кольцевым сварным швам;
  • негерметичность по причине коррозии внутренней и внешней;
  • негерметичность запорной и регулирующей арматуры;
  • потеря герметичности трубопровода от внешних механических воздействий;
  • потеря пропускной способности трубопровода из-за образования закупорок.

Некатегорийные отказы ПТ подразделяются на отказы 1-й и 2-й групп.

К отказам 1-й группы относятся отказы на внутриплощадочных напорных внутри- и межпромысловых нефтепроводах на участке от дожимной насосной станции (ДНС) до центрального пункта сбора (ЦПС) или от комплексного сборного пункта (КСП) и далее до магистральных нефтепроводов.

К отказам 2-й группы относятся отказы на газопроводах, на нефтесборных трубопроводах на участке от групповой замерной установки (ГЗУ) до ДНС, а также на водоводах.

Аварийный разлив нефти (АРН) — любой сброс и поступление нефти, произошедший как в результате аварии, опасного природного явления, катастрофы стихийного или иного бедствия, так и при транспортировке нефти, при строительстве или эксплуатации объекта, а также в процессе производства ремонтных работ.

Важным аспектом проблемы аварийных разливов нефти является исследование причин их возникновения. Аварийные разливы продукции скважин на объектах добычи нефти, как правило, происходят вследствие нарушения герметичности оборудования и трубопроводов. В большинстве случаев к основным факторам, способствующим возникновению аварии с разливами нефти относятся:

  • наличие опасных веществ — нефти и газа — в больших количествах;
  • проведение технологических процессов под давлением;
  • наличие в нефти механических примесей, обуславливающих абразивный износ оборудования и трубопроводов;
  • коррозионная активность составляющих сырой нефти.

Основные возможные причины и факторы, способствующие возникновению и развитию аварий на промысловых, межпромысловых трубопроводах:

  • Разлив нефти, в результате механического повреждения трубопровода и линейного оборудования;
  • Наличие блуждающих токов в грунте способствует ухудшению свойств металла стенок трубопровода, создает опасность разгерметизации нефтепровода;
  • Перекачка нефти под избыточным давлением, создает опасность разгерметизации трубопровода;
  • Пересечение трубопровода с автодорогами (воздействие нагрузок от движения автомобилей и изменение давление в грунте под автомобильными дорогами);
  • Разгерметизация трубопровода, в результате физико-химического воздействия;
  • Несоответствие качества металла и геометрических параметров труб требованиям ГОСТ, неудовлетворительное качество сварных швов, наличие циклических нагрузок при перекачке нефти, старение металла труб, укладка трубопровода в траншею в напряженном состоянии при строительстве и капитальном ремонте в итоге приведет к разгерметизации нефтепровода;
  • Частые пуски и остановки нефтеперекачивающих агрегатов, быстрые открытия и закрытия задвижек, всевозможные вибрации приводят к возникновению в трубопроводах нестационарных процессов, сопровождаемых резкими колебаниями давления, что в свою очередь может привести к разгерметизации трубопровода;
  • Разгерметизация трубопровода, в результате внешнего воздействия;

— Разгерметизация трубопроводов, в результате землетрясения, наводнения, оползни и т.д.

Характеристика / страна

Общая протяженность трубопроводов, тыс. км / экспозиция, всего

Магистральные газопроводы

Магистральные нефтепроводы

Магистральные нефтепродуктопроводы

Магистральные трубопроводы сжиженных углеводородных газов (МТ СУГ)

Россия

254.5

180

52.9

21.6

1.7

США

768.8

480.8

88.8

104.4

94.8

Экспозиция наблюдения аварийности, млн км/год

Россия

3.5

2.3

0.86

0.31

0.02

США

20.0

13.0

2.0

2.8

2.2

Характеристика / страна

Критерии определения аварии

Объем утечки, м3

Несчастный случай с летальным исходом

Пожар, взрыв

Экон. ущерб, в том числе от загрязнения окружающей среды

Другие

Газопроводы

Россия

Более 10,000

+

+

Повреждение или разрушение соседних объектов

США

+

Более $50,000

Нефте- и нефтепродуктопроводы

Россия

Более 10

+

+

+

Превышение объема утечки легкоиспаряющейся жидкости более 1 м3 в сутки

США

Более 7.9550 баррелей)

+

+

Более $50,000

Характеристика / страна

Количество аварий

Экспозиция наблюдения аварийности, тыс. км лет

Интенсивность аварий, в год на 1,000 км

Интенсивность аварий за последние 5 лет, в год на 1,000 км

Газопроводы

Россия (1999-2015)

313

2298

0.14

0.09

США (1993-2015)

1211

9400

0.13

0.11

Нефте- и нефтепродуктопроводы, а также МТ СУГ

Россия (1999-2015)

189

1165

0.18

0.07

США (1993-2015)

2711

5100

0.53

0.43

Характеристика / страна

Количество аварий с гибелью людей, штук

Количество погибших при авариях, чел.

Условная вероятность аварий с гибелью людей

Частота гибели людей при авариях, чел. в год на 1000 км

Газопроводы

Россия (2000-2015)

11

15

0,04

0,007

США (1993-2015)

23

42

0,02

0,005

Нефте- и нефтепродуктопроводы, а также МТ СУГ

Россия (2000-2015)

11

14

0,06

0,012

США (1993-2015)

26

39

0,01

0,008

Тип трубопровода

Газопроводы

Нефте- и нефтепродуктопроводы, МТ СУГ

Классификация территорий

Деление территорий вдоль магистрального трубопровода на 4 класса по плотности застройки

Требования по безопасным расстояниям

Не установлены

15 м от жилых домов, промышленных зданий и мест скопления людей

Способы обеспечения безо- пасности при прокладке трубопроводов на густонаселенных территориях

Ограничение уровня расчетных кольцевых напряжений величиной 0,72ч0,4 от нормативного предела текучести металла трубы. Уменьшение расстояния между за- движками (с 16 до 4 км).

Увеличение глубины заложения/ высоты засыпки. Ограничение рабочего давления

Требование по соблюдению безопасных расстояний (15 м) может быть отменено при дополнительном заглублении МТ на 0.3 м

Нормативные документы

Pipeline Safety Regulations — 49CFR Parts 190, 191, 192, 193, 194, 195, 198 and 199, revised as of October 1, 2011, U.S. Department of Transportation, Research and Special Programs Administration, Washington, D.C.

В результате проделанной работы нами был проделан анализ

При эксплуатации промышленных трубопроводов (водоводы высокого давления, нефтесборные коллектора, напорные и магистральные трубопроводы и т.д.) существует актуальная проблема в том, что при порыве трубопроводов происходит загрязнение окружающей среды, которое в свою очередь влечет за собой огромные экологические штрафы и затраты на ликвидацию последствий аварии со стороны эксплуатирующего предприятия. А так же существенный урон экологии.

Особое место занимают порывы на переходах трубопроводов через реки и озера, а так же порывы в пойменной зоне водных объектов. Порывы трубопроводов на водных объектах гораздо опаснее порывов на наземной части тем, что многократно увеличивается площадь загрязнения, время и средства на локализацию зоны загрязнения и ликвидацию последствий аварии, а так же наносится более серьезный вред окружающей среде. Ежегодно в бассейны рек и водоемы попадают сотни тысяч тонн нефти, в результате на воде образуется тонкая пленка, препятствующая газообмену. Основная задача при ликвидации последствий аварийных разливов нефтепродуктов на водной поверхности — ни при каких обстоятельствах не допустить загрязнения береговой полосы, так как в этом случае затраты на ликвидацию последствий аварии возрастают многократно.

Сложность устранения аварийных разливов на водных поверхностях заключается в том, что возникает необходимость привлечения дорогостоящего оборудования и спецтехники (моторные лодки, боновые заграждения, нефтесборное оборудование и техника).

Дополнительная сложность заключается (в большинстве случаев) в отсутствии подъездных путей для спецтехники.

Не стоит также забывать о том, что пластовая вода (сеноман) полностью растворяется в воде (в отличие от нефти) и приводит к гибели растительного и животного мира

1. Федеральный закон от 22 июля 2008 г. №123-ФЗ «Технический регламент о требованиях пожарной безопасности» // Собрание законодательства Российской Федерации. 2008. №30. Ст. 3579.

2. РД 39-132-94 «Правила по эксплуатации, ревизии, ремонту и отбраковке нефтепромысловых трубопроводов».

3. РД 03-293-99 «Положение о порядке технического расследования причин аварий на опасных производственных объектах».

4. СП 34-116-97 «Инструкция по проектированию, строительству и реконструкции промысловых нефтегазопроводов».

5. ВСН 005-88 «Строительство промысловых стальных трубопроводов».

6. Лисанов М.В. и др. Анализ риска магистральных нефтепроводов при обосновании проектных решений, компенсирующих отступления от действующих требований безопасности // Безопасность труда в промышленности. — 2010. — №3. — С. 51-59.

7. Лисанов М.В. и др. Анализ российских и зарубежных данных по аварийности на объектах трубопроводного транспорта // Безопасность труда в промышленности. — 2010. — №7. — С. 16- 22.

8. Методическое руководство по оценке степени риска аварий на магистральных нефтепроводах. Сер. 27. Вып. 1. М.: Промышленная безопасность, 2005. 118 с.

9. Олейник А.П. Сравнительный анализ аварийности на объектах трубопроводного транспорта в России и США // Вестник РУДН. — №4. — 2016. — с.84-90.

10. Савина А.В. Анализ риска аварий при обосновании безопасных расстояний от магистральных трубопроводов сжиженного углекислого газа до объектов с присутствием людей: дисс. … канд. техн. наук. М.: ЗАО НТЦ ПБ, 2013.