Трансформатор тока представляет собой аппарат, первичная обмотка которого включена в цепь последовательно. А вторичная обмотка, будучи замкнута на некоторую цепь (“вторичную цепь”) отдаёт в неё ток, пропорциональный первичному току.
В трансформаторах тока высокого напряжения первичная обмотка изолирована от вторичной (и от земли) на полное рабочее напряжение.
Вторичная обмотка в эксплуатации имеет потенциал, близкий к потенциалу земли, так как один конец этой обмотки обычно заземляется.
Таким образом, трансформатор тока позволяет измерять и учитывать ток высокого напряжения приборами низкого напряжения, доступными для непосредственного наблюдения обслуживающим персоналом. При этом во вторичную цепь трансформатора тока включаются амперметры, токовые обмотки ваттметров, счётчиков и т.д.
Трансформатор тока не только изолирует реле, измерительные и прочие приборы от цепи высокого напряжения, но и позволяет свести измерение любого номинального первичного тока и долей его к измерению некоторого стандартного номинального вторичного тока и долей его, например 5, А.
Трансформатор тока имеет следующие основные назначения:
- а) изолировать обслуживающий персонал и приборы от потенциала сети, в которой производятся измерения;
- б) позволять производить измерение или учёт любых токов стандартными приборами, например на 5, А.
Часто один и тот же трансформатор тока может быть использован как для целей измерения, так и для целей защиты.
Трансформатор как прибор для промышленного преобразования электрической энергии был изобретён П.Н. Яблочковым и И.Л. Усагиным в 1876 г.
Примитивные трансформаторы тока впервые появились примерно в 1900 г.
В России производство трансформаторов тока началось в 1905 — 1910 гг. исключительно по германским чертежам.
Серийное и крупносерийное производство трансформаторов тока в Советском Союзе началось с открытием первого отечественного завода высоковольтной аппаратуры “Электроаппарат” в Ленинграде (1925 г.).
На этом заводе созданы кадры специалистов в области трансформаторов тока и разработаны многочисленные оригинальные их конструкции.
трансформатор импульсный дроссель ток
1. История изобретения трансформатора
Восьмидесятые годы прошлого столетия вошли в историю техники под названием периода «трансформаторных битв». Такое необычное название они получили потому, что изобретение трансформатора явилось одним из сильнейших аргументов в пользу переменного тока. А настоящая битва шла между сторонниками постоянного и переменного токов и отражала поиски путей выхода из назревшего энергетического кризиса, связанного с проблемой централизованного производства электроэнергии и передачей её на большие расстояния.
Физика» «Работа совершаемая электрическим током
... того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч). Закон Ома Закон Ома. Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных ...
Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своем приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.
В 1836 году ирландский физик Николас Каллан изобрел индукционную катушку. В 1838 году это изобретение повторил американский изобретатель
Чарльз Пейдж, но наибольшую известность получил немецкий механик Генрих Румкорф, именем которого впоследствии стали называть индукционную катушку.
Становилось все яснее, что система электроснабжения на постоянном токе не имеет перспектив и основным направлением развития электроэнергетики становилась система переменного тока.
Новым шагом в использовании трансформаторов с разомкнутым сердечником для распределения электроэнергии явилась «система распределения электричества для производства света и двигательной силы», запатентованная во Франции в 1882 году Голяром и Гиббсом. Трансформаторы Голяра и Гиббса предназначались уже для преобразования напряжения, то есть имели коэффициент трансформации отличный от единицы. Трансформаторы с разомкнутым сердечником в 1883 году устанавливаются на подстанциях Лондонского метрополитена, а 1884 году — в Турине (Италия).
Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон. Сердечник этого трансформатора набран был из стальных полос или проволок, разделенных изоляционным материалом, что снижало потери на вихревые токи. На сердечнике помещались, чередуясь, катушки высшего и низшего напряжения. Впервые предложения о параллельном включении трансформаторов высказал Р. Кеннеди в 1883 году, но более всесторонне этот способ соединения был обоснован венгерским электротехником Максом Дери, который в 1885 году получил патент на параллельное включение первичных и вторичных обмоток трансформаторов и показал преимущество такого включения. Независимо от него аналогичный патент в Англии получил С.Ц.Ферранти. Передача электрической энергии переменным током высокого напряжения оказалась возможной после создания однофазного трансформатора с замкнутой магнитной системой. Такой трансформатор в нескольких модификациях (кольцевой, броневой и стержневой) был разработан в 1885 году венгерскими электротехниками М. Дерри, О. Блатии, К. Циперновским, впервые предложившими и сам термин трансформатор. Венгерские инженеры нашли оптимальное соотношение между расходом меди и стали в трансформаторах.
Русский инженер Доливо-Добровольский выступил с предложением применять для целей передачи и эксплуатации электроэнергии разработанную им систему трехфазного тока. Доливо-Добровольский показал, что в отношении передачи электроэнергии система трехфазного тока, по сравнению с системой двухфазного тока, является более экономичной, но решающее преимущество трехфазной системы он видел «в превосходных качествах» разработанных им трехфазных асинхронных двигателей. В этом направлении он провел огромную творческую работу: доказал, что при помощи трехфазного тока можно создать в машине такое же вращающееся магнитное поле, как и при помощи двухфазного тока, разработал основные модификации трехфазного асинхронного двигателя. Параллельно с этим Доливо-Добровольский разработал конструкцию трехфазного трансформатора сначала, в 1890 г., с расположением сердечников по кругу и кольцевыми ярмами, а затем с обычным в настоящее время расположением стержней в одной плоскости. А так как, кроме этого, Доливо-Добровольский много работал в области теории, расчета и конструирования электрических машин, то можно сказать, что он разработал собственно все элементы трехфазной системы. Предложенная Доливо-Добровольским система трехфазного тока вызвала живейший интерес и привлекла к себе повсеместное внимание. Несмотря на ряд возражений, ее технические достоинства были настолько велики и очевидны, что уже в ближайшее время она заняла ведущее место в ряду других систем.
Трансформаторы напряжения
... нейтралей. В сетях с малыми токами замыкания на землю применяют трехфазные трехобмоточные трансформаторы напряжения с магнитной системой, имеющей пять стержней - пятистержневые трансформаторы. У этих трансформаторов напряжения первичные обмотки соединены в звезду ...
2. Типы трансформаторов
2.1 Силовой трансформатор
Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.
2.2 Автотрансформатор
Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Применение автотрансформаторов экономически оправдано вместо обычных трансформаторов для соединения эффективно заземленных сетей с напряжением 110 кВ и выше при коэффициентах трансформации не более 3-4.Существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.
2.3 Трансформатор тока
Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.
2.4 Трансформатор напряжения
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
2.5 Импульсный трансформатор
Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда).
Релейная защита и автоматика трансформаторов
... тока, а не от тока самозапуска электродвигателей, питаемых от защищаемого трансформатора, что и обусловливает повышение чувствительности защиты. Рис. 2. Защита трансформатора от внешних к. з. и перегрузок. Напряжение ... возникших повреждений релейная защита должна обеспечивать полное отключение в течение сотых долей секунды. По своему назначению реле разделяют на реле управления и реле защиты. Реле ...
Он служит для трансформации кратковременных видеоимпульсов напряжения. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.
2.6 Разделительный трансформатор
Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.
2.7 Пик-трансформатор
Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.
2.8 Сдвоенный дроссель
Сдвоенный дроссель (встречный индуктивный фильтр) — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.
3. Измерительный трансформатор тока
3.1 Назначение
Измерительный трансформатор тока — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.
Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.
К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).
3.2 Принцип действия ТТ
Рассмотрим принцип работы трансформатора тока. По первичной обмотке 1 трансформатора тока проходит ток I 1 , называемый первичным током. Он зависит только от параметров первичной цепи. Поэтому при анализе явлений, происходящих в трансформаторе тока, первичный ток можно считать заданной величиной. При прохождении первичного тока по первичной обмотке в магнитопроводе создается переменный магнитный поток Ф 1 , изменяющийся с той же частотой, что и ток I 1 .
Трансформаторы тока назначение и принцип действия
... Вопрос 2. Компенсационные цепи. Компенсаторы постоянного тока. Назначение и принцип работы Характерной особенностью компенсационного принципа является отсутствие тока в цепи нулевого индикатора в ... силового трансформатора. Так как при малых токах в обмотках трансформатора падения напряжения в сопротивлениях этих обмоток также малы, напряжения на зажимах первичной и вторичной обмоток практически ...
Магнитный поток Ф 1 охватывает витки как первичной, так и вторичной обмоток. Пересекая витки вторичной обмотки, магнитный поток Ф 1 при своем изменении индуцирует в ней электродвижущую силу.
Если вторичная обмотка замкнута на некоторую нагрузку, т. е. к ней присоединена вторичная цепь, то в такой системе «вторичная обмотка — вторичная цепь» под действием индуцируемой э. д. с. будет проходить ток. Этот ток согласно закону Ленца будет иметь направление, противоположное направлению первичного тока I 1 .
Ток, проходящий по вторичной обмотке, создает в магнитопроводе переменный магнитный поток Ф 2 , который направлен встречно магнитному потоку Ф 1 . Вследствие этого магнитный поток в магнитопроводе, вызванный первичным током, будет уменьшаться.
В результате сложения магнитных потоков Ф 1 и Ф 2 в магнитопроводе устанавливается результирующий магнитный поток Ф 0 = Ф 1 — Ф 2 , составляющий несколько процентов магнитного потока Ф 1 . Поток Ф 0 и является тем передаточным звеном, посредством которого осуществляется передача энергии от первичной обмотки ко вторичной в процессе преобразования тока.
Результирующий магнитный поток Ф 0 , пересекая витки обеих обмоток, индуцирует при своем изменении в первичной обмотке противо-э. д. с. Е 1 , а во вторичной обмотке — э. д. с. Е 2 . Так как витки первичной и вторичной обмоток имеют примерно одинаковое сцепление с магнитным потоком в магнитопроводе (если пренебречь рассеянием), то в каждом витке обеих обмоток индуцируется одна и та же э. д. с. Под воздействием э. д. с. Е 2 во вторичной обмотке протекает ток I 2 , называемый вторичным током.
Если обозначить число витков первичной обмотки через w x , а вторичной обмотки — через w 2 , то при протекании по ним соответственно токов I 1 и I 2 в первичной обмотке создается магнитодвижущая сила F 1 = I 1 w 1 , называемая первичной магнитодвижущей силой (м. д. с), а во вторичной обмотке — магнитодвижущая сила F 2 = I 2 w 2 , называемая вторичной м. д. с. Магнитодвижущая сила измеряется в амперах.
При отсутствии потерь энергии в процессе преобразования тока магнитодвижущие силы F 1 и F 2 должны быть численно равны, но направлены в противоположные стороны.
Принцип работы трансформаторов
... тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока врубается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, идущий по вторичной обмотке трансформатора тока, равен току первичной обмотки, ... сеть, не различающуюся особенными критериями работы, характером перегрузки либо режимом работы. трансформаторы особого назначения предусмотрены для ...
Вторичные обмотки трансформатора тока (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала (указанного на табличке) по модулю полного Z или cos ф (обычно cos = 0.8 индукт.) приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создаёт угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода, трансформатор начинает перегреваться, что также может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создаёт компенсирующего магнитного потока в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой, имеет очень высокое значение и потери в магнитопроводе сильно нагревают его.
3.3 Устройство ТТ
В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатаной кремнистой трансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток. Первичная обмотка также может быть выполнена в виде катушки, намотанной на сердечник, либо в виде шины. В некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем путём пропускания провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях трансформаторов тока сердечник выполняется из нанокристаллических (аморфных) сплавов, для расширения диапазона, в котором трансформатор работает в классе точности.
4. Схемы подключения
В трёхфазных сетях с изолированной нейтралью (сети с напряжением 6-10-35 кВ) трансформаторы тока нередко устанавливаются только на двух фазах (обычно фазы A и C).
Это связано с отсутствием нулевого провода в сетях 6-35 кВ и информация о токе в фазе с отсутствующим трансформатором тока может быть легко получена измерением тока в двух фазах. В сетях с глухозаземлённой нейтралью (сети до 1000В) или эффективно заземлённой нейтралью (сети напряжением 110 кВ и выше) трансформаторы тока в обязательном порядке устанавливаются во всех трёх фазах.
В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются по схеме «Звезда» (рис.1), в случае двух фаз — «Неполная звезда» (рис.2).
Для дифференциальных защит силовых трансформаторов с электромеханическими реле трансформаторы подключают по схеме «Треугольник» (для защиты обмотки трансформатора, соединённой в звезду при соединении защищаемого трансформатора «треугольник — звезда», что необходимо для компенсации сдвига фаз вторичных токов с целью уменьшения тока небаланса).
Для экономии измерительных органов в цепях защиты иногда применяется схема «На разность фаз токов» (не должна применяться для защиты от коротких замыканий за силовыми трансформаторами с соединением треугольник — звезда).
Измерительные трансформаторы тока и напряжения (2)
... % от номинальной величины первичного тока. Трансформаторы тока c классом точности без буквы S имеют нижний предел 5 %. Пределы допускаемых погрешностей трансформатора тока зависят от вторичной нагрузки трансформатора тока и от величины первичного тока. Таблица 1.2 Пределы ...
5. Параметры ТТ
Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.
5.1 Коэффициент трансформации
Коэффициент трансформации трансформатора тока определяет номинал измерения тока и означает при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А).
Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов. Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока к номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А — 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А. Иногда трансформаторы тока могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединение (например такое решение применяется в трансформаторах тока ТФЗМ — 110) либо наличием отводов на первичной или вторичной обмотках (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).
5.2 Класс точности
Для определения класса точности трансформатора тока вводятся понятия:
- погрешности по току ДI = I2 — I1′, где I2- действительный вторичный ток, I1′ =I1/n — приведённый первичный ток, I1 — первичный ток, n — коэффициент трансформатора тока;
- погрешности по углу д = б1 — б2, где б1 — теоретический угол сдвига фаз между первичным и вторичным током б1 = 180°,б2 — действительный угол между первичным и вторичным током;
- относительной полной погрешности е%=(|I1′-I2|)/|I1’|, где |I1’| — модуль комплексного приведённого тока.
Погрешности по току и углу объясняются действием тока намагничивания. Для промышленных трансформаторов тока устанавливаются следующие классы точности : 0,1 0,5; 1; 3, 10Р. Согласно ГОСТ 7746 — 2001 класс точности соответствует погрешности по току ДI, погрешность по углу равна: ±40′ (класс 0,5); ±80′ (класс 1), для классов 3 и 10Р угол не нормируется. При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичной цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора. Добавление после обозначения класса точности трансформаторов тока литеры S (например 0,5S) означает, что трансформатор будет находиться в классе точности от 0,01 до 1,2 номинального тока. Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10 % при максимальном токе к.з. и заданном сопротивлении вторичной цепи. Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной обмотке тока 0,2 ч 200 % номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.
Техническое обслуживание измерительных трансформаторов тока
... 1.1 Конструкция и типы трансформаторов тока измерительный трансформатор преобразователь 1.1.1 Технические характеристики трансформаторов тока Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000А) и номинальным вторичным током Iном2, который принят ...
5.3 Номинальное напряжение трансформатора тока
Первым основным параметром трансформатора тока, конечно же, является его номинальное напряжение. Под номинальным напряжением понимается действующая величина напряжения, при которой может работать ТТ. Это напряжение можно найти в паспорте на конкретный трансформатор тока.
5.4 Номинальный ток первичной цепи трансформатора тока
Номинальный ток первичной цепи, или можно сказать, номинальный первичный ток — это ток, протекающий по первичной обмотке трансформатора тока, при котором предусмотрена его длительная работа. Значение первичного номинального тока также указывается в паспорте на конкретный трансформатор тока.
5.5 Номинальный ток вторичной цепи трансформатора тока
Еще одним параметром трансформатора тока является номинальный ток вторичной цепи, или номинальный вторичный ток — это ток, протекающий по вторичной обмотке трансформатора тока.
Значение номинального вторичного тока, тоже отображается в паспорте на трансформатор тока и оно всегда равно 1 (А) или 5 (А).
5.6 Вторичная нагрузка трансформатора тока
Под вторичной нагрузкой трансформатора тока понимается полное сопротивление его внешней вторичной цепи (амперметры, обмотки счетчиков электрической энергии, токовые реле релейной защиты, различные токовые преобразователи).
Это значение измеряется в омах (Ом).
Также вторичную нагрузку трансформатора тока можно выразить через полную мощность, измеряемую в вольт-амперах (В*А) при определенном коэффициенте мощности и номинальном вторичном токе.
Если сказать точно по определению, то вторичная нагрузка трансформатора тока — это вторичная нагрузка с коэффициентом мощности (cos=0,8), при которой сохраняется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его номинального значения.
5.7 Электродинамическая стойкость
Ток электродинамической стойкости — это максимальное значение амплитуды тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без каких-либо повреждений, препятствующих дальнейшей его исправной работе, способность трансформатора тока противостоять механическим и разрушающим воздействиям тока короткого замыкания.
Есть такое понятие, как кратность электродинамической стойкости. Обозначается индексом Кд и является отношением тока электродинамической стойкости Iд к амплитуде номинального первичного тока I1н .
Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока.
5.8 Термическая стойкость
Это максимальное действующее значение тока короткого замыкания за промежуток времени t, которое трансформатор тока выдерживает без нагрева токоведущих частей до превышающих допустимых температур и без повреждений, препятствующих дальнейшей его исправной работе. Так вот температура токоведущих частей трансформатора тока, выполненных из меди не должна быть больше 250 градусов, из алюминия — 200, это способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания за определенный промежуток времени.
Проектирование релейной защиты трансформатора
... Выбираем схемы соединения ТА. К Схемы соединения ТА в дифференциальной токовой отсечке трансформаторов. Находим вторичные номинальные токи в плечах защиты : где k сх - коэффициент схемы (kсх = ... типа реле дифзащиты. Для этого сначала определим первичный ток (на стороне ВН трансформатора) ток срабатывания защиты. Первым условием выбора первичного тока срабатывания защиты I сз является отстройка от ...
Существует такое понятие, как кратность тока термической стойкости. Обозначается индексом Кт и является отношением тока термической стойкости ItТ к действующему значению номинального первичного тока I1н .
6. Классификации ТТ
6.1 Классификация трансформаторов тока по коэффициенту трансформации
- с одним постоянным коэффициентом трансформации (одноступенчатые)
- с несколькими коэффициентами трансформации (многоступенчатые)
Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.
У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.
6.2 Классификация трансформаторов тока по первичной обмотке
По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:
- с одним витком (одновитковые)
- с несколькими витками (многовитковые)
·
6.3 Классификация трансформаторов тока по типу изоляции
Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной).
Существует следующие способы изоляции обмоток между собой:
- твердая изоляция
- вязкая изоляция
- смешанная изоляция
- газовая изоляция
Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).
Вязкая изоляция состоит из компаундов различных составов.
Под смешанной изоляцией понимают бумажно-масляную изоляцию.
В качестве газовой изоляции применяется воздух или элегаз.
Заключение
В данной работе были рассмотрены общие вопросы, касающиеся трансформаторов тока. Были изучены назначение, принцип действия и устройство различных конструкций трансформаторов тока. В работе приведена основная классификация типов трансформаторов тока. Даны сведения об основных параметрах и характеристиках отдельных конструкций трансформаторов тока внутренней и наружной установки, а также приведены некоторые сведения об остальных типах трансформаторов тока.
Список используемой литературы
[Электронный ресурс]//URL: https://drprom.ru/kursovaya/transformatoryi-toka-2/
1. Электрические измерения: Учебник для вузов. Под ред. А. Ф. Фремке и Е. М. Душина. М.: Академия. 2007.
2. Информационно-измерительная техника в электроэнергетике. Е. С. Фомин. М.: Додэка. 2007.
3. Измерительное оборудование электрической подстанции. В. В. Анфимов. М.: Энергоатомиздат. 2002.
4. Энергетическая электроника. Ю. П. Хаборов. Новосибирск: Изд-во НГТУ. 2004.
5. Информационно- измерительная техника и электроника. Методические указания к лабораторным работам. В. А. Шахнин. Владимир: Изд-во ВЛГУ. 2010.