Физика» «Работа совершаемая электрическим током

Реферат

Электрический ток

Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон — «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

4 стр., 1571 слов

Электрические машины

... полюсам на другой стороне магнита. Вращающаяся часть электрической машины называется ротором (или якорем), а неподвижная - ... лента из диэлектрика передает на металлический шар заряд, постепенно увеличивающийся до нескольких миллионов вольт. Генератор ... elektron, означающего "янтарь". Хотя греки сделали важный шаг в направлении крупного открытия, первая машина, способная вырабатывать электричество, ...

Основные величины электрического тока

Количество электричества и сила тока. Действия электрического тока могут быть сильными или слабыми. Сила действия электрического тока зависит от величины заряда, который протекает по цепи за определенную единицу времени. Чем больше электронов переместилось от одного полюса источника к другому, тем больше общий заряд, перенесенный электронами. Такой общий заряд называется количество электричества, проходящее сквозь проводник.

От количества электричества зависит, в частности, химическое действие электрического тока, т.е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.

Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с).

В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А).

Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.

Электрическое напряжение. Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц — электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.

Напряжение — это отношение работы тока на определенном участке электрической цепи к заряду, протекающему по этому же участку цепи. Работа тока измеряется в джоулях (Дж), заряд — в кулонах (Кл).

В связи с этим единицей измерения напряжения станет 1 Дж / Кл. Данную единицу назвали вольтом (В).

Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре).

5 стр., 2477 слов

При мо сдаточные испытания двигателей постоянного тока Испытание ...

... ПРОГРАММА ПРИЁМО-СДАТОЧНЫХ ИСПЫТАНИЙ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА. В стандартах на электрические машины ... соответствия номинальных значений напряжений ДПТ напряжению измерения сопротивления обмоток. U н ... тока цепи якоря, при котором коммутация соответствует степени искрения 1. В п.3 более подробно рассмотрим испытание электроизоляции обмоток ДПТ. 3. Испытание электроизоляции обмоток ДПТ. Электрическая ...

Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.

Электрическое сопротивление. После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т.е. в этом случае сила тока, имеющаяся в электрической цепи, разная. Это явление можно объяснить тем, что разные проводники имеют разное электрическое сопротивление, которое представляет собой физическую величину. В честь немецкого физика ее назвали Омом. Как правило, в физике применяются более крупные единицы: килоом, мегаом и пр. Сопротивление проводника обычно обозначается буквой R, длина проводника — L, площадь поперечного сечения — S. В этом случае можно сопротивление записать в виде формулы:

R = р * L/S

где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м 2 . Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м.

По данным табл. 1 становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое — сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).

Электрическая емкость. Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников — не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф).

На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).

Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.

Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т.е. позволяет выполнять электролиз и т.д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение — в вольтах, сила тока — амперах, время — в секундах. В связи с этим 1 Дж = 1В х 1А х 1 с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.

8 стр., 3956 слов

Расчет токов короткого замыкания в электрических сетях

... напряжение короткого замыкания между выводами обмоток высокого и низкого напряжения, выраженное в %; номинальная мощность трансформатора, МВА. Определим индуктивное сопротивление ... тока КЗ. Определим полное сопротивление цепи для протекания тока трёхфазного КЗ в 1-й ветви : Определим действующее значение периодической составляющей тока трехфазного КЗ в 1-й ветви для точки К-1 : 2.2 Расчет тока ...

Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт).

На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).

Закон Ома

Закон Ома. Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т.е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора.

Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.

В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.

Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термо сплав.

3 стр., 1105 слов

Потери электрической энергии в трансформаторе и коэффициент полезного ...

... вихревых токов, то КПД трансформаторов резко снизится, ибо большое количество энергии будет потеряно в сердечнике. Таким образом, потери энергии в сердечнике связаны с двумя явлениями: с потерями на перемагничивание сердечника и с потерями ...

Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т.д. Все это привело к более глубокому пониманию электрических явлений и факторов.

Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т.е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.

Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии — для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.

Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.

Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.

Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи).

Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Джоуля-Ленца

Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U).

По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

А = Uit

4 стр., 1887 слов

Трехфазные цепи переменного тока

... напряжения нагрузки становятся одинаковыми. Рис. 6.8 5. Мощность в трехфазных цепях Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками. Активная мощность трехфазной цепи равна сумме активных мощностей ... части электрической цепи переменного тока (например, часть обмотки электрической машины). Некоторое наглядное представление о возникновении трехфазного тока дает ...

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т.е. работа в единицу времени, равна:

Р = A/t = Ui

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

U = ir

где r — сопротивление проводника. В таком случае:

А = rt2i

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.

Закон электромагнитной индукции

В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т.е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца. Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

3 стр., 1262 слов

Датчики тока и напряжения

... электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений. методичка [874,1 K], добавлен 22.12.2009 Прямые и косвенные измерения напряжения и силы тока. ...

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Электрические цепи и их элементы

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания).

Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т.д.).

Эти элементы называются приемниками электрической энергии (электроприемниками).

В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

10 стр., 4800 слов

Трехфазный ток. Принцип действия передачи энергии на расстояние

... 3-фазного тока (асинхронные и синхронные) устроены проще, чем двигатели постоянного тока, одно- или 2-фазные, и имеют высокие показатели экономичности. Возможность получения в одной установке двух рабочих напряжений -- фазного и линейного, и двух ...

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи.

Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные электрические цепи — несколько контуров.

Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Режим холостого хода — это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.

Режим короткого замыкания — это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению. В этом случае ток в цепи в 2 раза меньше тока короткого замыкания.

Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Последовательное соединение элементов цепи

В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.

Рис. 1. Последовательное соединение двух резисторов в цепи: 1 — первый резистор; 2 — второй резистор

10 стр., 4634 слов

Методы и средства измерения электрических величин

... источника электрической энергии. 1.3 Измерение мощности в цепях постоянного тока Активная мощность, которая выделяется на участке цепи постоянного тока, может быть оценена в результате измерения количества тепла, выделяемого этим участком цепи. Прямые колориметрические измерения оказываются длительными и трудоемкими, поэтому для измерения мощности ...

В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:

I = I1 = I2

А вот напряжение на их концах суммируется:

U = U1 + U2

Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:

R = R1 + R2

В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:

U1/U2 = R1/R2

Переменный ток

Как мы уже знаем, электрический ток бывает постоянным и переменным. Но широко применяется только переменный ток. Это обусловлено тем, что напряжение и силу переменного тока можно преобразовывать практически без потерь энергии. Переменный ток получают при помощи генераторов переменного тока с использованием явлений электромагнитной индукции.

Действующие значения силы тока и напряжения

Как известно, переменная ЭДС индукции вызывает в цепи переменный ток. При наибольшем значении ЭДС сила тока будет иметь максимальное значение и наоборот. Это явление называется совпадением по фазе. Несмотря на то что значения силы тока могут колебаться от нуля и до определенного максимального значения, имеются приборы, с помощью которых можно замерить силу переменного тока.

Характеристикой переменного тока могут быть действия, которые не зависят от направления тока и могут быть такими же, как и при постоянном токе. К таким действиям можно отнести тепловое. К примеру, переменный ток протекает через проводник с заданным сопротивлением. Через определенный промежуток времени в этом проводнике выделится какое-то количество тепла. Можно подобрать такое значение силы постоянного тока, чтобы на этом же проводнике за то же время выделялось этим током такое же количество тепла, что и при переменном токе. Такое значение постоянного тока называется действующим значением силы переменного тока.

Амперметры и вольтметры магнитоэлектрической системы не позволяют производить замеры в цепях переменного тока. Это происходит потому, что при каждом изменении тока в катушке меняется направление вращающего момента, которое воздействует на стрелку прибора. Из-за того что катушка и стрелка обладают большой инерцией, прибор не реагирует на переменный ток. Для этих целей применяются приборы, не зависящие от направления тока. Например, это могут быть приборы, основанные на тепловом действии тока. В таких приборах стрелка поворачивается за счет удлинения нити, нагреваемой током.

Можно также применять приборы с электромагнитной системой действия. Подвижной частью в данных приспособлениях является железный диск небольшого диаметра. Он перемагничивается и втягивается внутрь катушки, через которую пропущен переменный ток. Такие приборы измеряют действующие значения силы тока и напряжения.

Катушка индуктивности и конденсатор в цели переменного тока

Особенностями переменного тока являются изменение силы и направления тока. Эти явления отличают его от постоянного тока. К примеру, при помощи переменного тока нельзя зарядить аккумулятор. Также нельзя применять его для других технических целей.

Сила переменного тока состоит в прямой зависимости не только от напряжения и сопротивления, но и индуктивности проводников, подключенных к цепи. Как правило, индуктивность существенно уменьшает силу переменного тока. В связи с тем что сопротивление цепи равно отношению напряжения к силе тока, то подключение к цепи катушки индуктивности увеличит общее сопротивление. Это произойдет вследствие наличия ЭДС самоиндукции, которая не дает току увеличиваться. Если напряжение изменяется, то сила тока просто не успевает достигнуть тех максимальных значений, которые она приобрела бы, не будь самоиндукции. Из этого вытекает, что наибольшее значение силы переменного тока ограничивается индуктивностью, т.е. чем больше будет индуктивность и частота напряжения, тем меньше будет значение силы тока.

Если в цепь постоянного тока включить батарею конденсаторов, то тока в цепи не будет, потому что пластины конденсатора отделяются друг от друга изоляционными прокладками. При наличии в цепи конденсатора постоянный ток существовать не может.

Если точно такую же батарею подсоединить к цепи переменного тока, то в ней возникнет ток. Объясняется это следующим образом. Под действием изменяющегося напряжения происходит зарядка и разрядка конденсаторов. То есть если одна обкладка конденсатора имела в течение какого-либо полупериода отрицательный заряд, то в следующий полупериод она приобретет положительный заряд. Следовательно, перезарядка конденсатора перемещает заряды по цепи. А это и есть электрический ток, который можно обнаружить при помощи амперметра. Чем больше будет перемещаемый заряд, тем больше сила тока, т.е. чем большей емкостью обладает конденсатор и чем чаще он перезаряжается, тем больше частота.

Трехфазный переменный ток

В данное время в мировой промышленной практике широко распространен трехфазный переменный ток, который имеет множество преимуществ перед однофазным током. Трехфазной называют такую систему, которая имеет три электрические цепи со своими переменными ЭДС с одинаковыми амплитудами и частотой, но сдвинутые по фазе относительно друг друга на 120° или на 1/3 периода. Каждая такая цепь называется фазой.

Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора. Пример такой системы показан на.

Согласно вышеперечисленным условиям, выясняется, что ЭДС, возникающая во втором генераторе, не будет успевать измениться, по сравнению с ЭДС первого генератора, т.е. она будет опаздывать на 120°. ЭДС третьего генератора также будет опаздывать по отношению ко второму на 120°.

Однако такой способ получения переменного трехфазного тока весьма громоздкий и экономически невыгодный. Чтобы упростить задачу, нужно все статорные обмотки генераторов совместить в одном корпусе. Такой генератор получил название генератор трехфазного тока. Когда ротор начинает вращаться, в каждой обмотке возникает изменяющаяся ЭДС индукции. Из-за того что происходит сдвиг обмоток в пространстве, фазы колебаний в них также сдвигаются относительно друг друга на 120°.

Для того чтобы подсоединить трехфазный генератор переменного тока к цепи, нужно иметь 6 проводов. Для уменьшения количества проводов обмотки генератора и приемников нужно соединить между собой, образовав трехфазную систему. Данных соединений два: звезда и треугольник. При использовании и того и другого способа можно сэкономить электропроводку.

Соединение треугольником

Пример соединения треугольником

При использовании данного способа соединения конец X первой обмотки генератора подключают к началу В второй его обмотки, конец Y второй обмотки — к началу С третьей обмотки, конец Z третьей обмотки — к началу А первой обмотки. Пример соединения показан на рис. 12. При данном способе соединения фазных обмоток и подключении трехфазного генератора к трехпроводной линии линейное напряжение по своему значению сравнивается с фазным:

Uф = Uл.

Условия возникновения тока.

Электрическим током называют направленное движение заряженных частиц. Количественными характеристиками тока являются его сила тока (отношение заряда: переносимого через поперечное сечение проводника в единицу времени):

Условия возникновения тока  1

и его плотность, определяемая соотношением:

Условия возникновения тока  2.

Единицей измерения силы тока является ампер (1А — характерное значение тока, потребляемого бытовыми электронагревательными приборами).

Необходимыми условиями существования тока являются наличие свободных носителей зарядов, замкнутой цепи и источника ЭДС (батареи), поддерживающего направленное движение.

Электрический ток может существовать в различных средах: в металлах, вакууме, газах, в растворах и расплавах электролитов, в плазме, в полупроводниках, в тканях живых организмов.

При протекании тока практически всегда происходит взаимодействие носителей зарядов с окружающей средой, сопровождающееся передачей энергии последней в виде тепла. Роль источника ЭДС как раз и состоит в компенсации тепловых потерь в цепях.

Электрический ток в металлах обусловлен движением относительно свободных электронов через кристаллическую решетку. Причины существования свободных электронов в проводящих кристаллах может быть объяснена только на языке квантовой механики.

Опыт показывает, что сила электрического тока, протекающего по проводнику, пропорциональна приложенной к его концам разности потенциалов (закон Ома).

Постоянный для выбранного проводника коэффициент пропорциональности между током и напряжением называют электрическим сопротивлением:

(3)

Сопротивление измеряют в омах (сопротивление человеческого тела составляет около 1000 Ом).

Величина электрического сопротивления проводников слабо возрастает при увеличении их температуры. Это связано с тем, что при нагревании узлы кристаллической решетки усиливают хаотические тепловые колебания, что препятствует направленному движению электронов. Во многих задачах непосредственный учет колебаний решетки оказывается весьма трудоемким. Для упрощения взаимодействия электронов с колеблющимися узлами оказывается удобным заменить их столкновениями с частицами газа гипотетических частиц — фононов, свойства которых подбираются так, чтобы получить максимально приближенное к реальности описание и могут оказываться весьма экзотическими. Объекты такого типа весьма популярны в физике и называются квазичастицами. Помимо взаимодействий с колебаниями кристаллической решетки движению электронов в кристалле могут препятствовать дислокации — нарушения регулярности решетки. Взаимодействия с дислокациями играют определяющую роль при низких температурах, когда тепловые колебания практически отсутствуют.

Некоторые материалы при низких температурах полностью утрачивают электрическое сопротивление, переходя в сверх проводящее состояние. Ток в таких средах может существовать без каких-либо ЭДС, поскольку потери энергии при столкновениях электронов с фононами и дислокациями отсутствуют. Создание материалов, сохраняющих сверхповодящее состояние при относительно высоких (комнатных) температурах и небольших токах является весьма важной задачей, решение которой произвело бы настоящий переворот в современной энергетике, т.к. позволило бы передавать электроэнергию на большие расстояния без тепловых потерь.

В настоящее время электрический ток в металлах используется главным образом для превращения электрической энергии в тепловую (нагреватели, источники света) или в механическую (электродвигатели).

В последнем случае электрический ток используется в качестве источника магнитных полей, взаимодействие с которыми других токов вызывает появление сил.

Электрический ток в вакууме строго говоря невозможен из-за отсутствия в нем свободных электрических зарядов. Однако, некоторые проводящие вещества при нагревании или облучении светом способны испускать со своей поверхности электроны (термоэмиссия и фотоэмиссия), которые способны поддерживать электрический ток, двигаясь от катода к другому (положительному) электроду — аноду. При подаче на анод отрицательного напряжения ток в цепи обрывается. Описанное свойство обуславливает широкое применение электровакуумных приборов в электронных устройствах для выпрямления переменного тока. До сравнительно недавнего времени электровакуумные устройства широко использовались в качестве усилителей электрических сигналов. В настоящее время они почти полностью вытеснены полупроводниковыми приборами.

Электрический ток в газах на первый взгляд не может существовать из-за отсутствия свободных заряженных частиц (электроны в атомах и молекулах газов прочно “связаны” с ядрами электростатическими силами).

Однако, при передаче атому энергии порядка 10эВ (энергия, приобретаемая свободным электроном при прохождении через разность потенциалов в 10 В), последний переходит в ионизированное состояние (электрон уходит от ядра на сколь угодно большое расстояние).

В газах при комнатных температурах всегда присутствует очень небольшое количество ионизированных атомов, возникших под действием космического излучения (фотоионизация).

При помещении такого газа в электрическое поле заряженные частицы начинают разгоняться, передавая нейтральным атомам набранную кинетическую энергия и ионизуя их. В результате развивается лавинообразный процесс нарастания числа свободных электронов и ионов — возникает электрический разряд. Характерное свечение разряда связано с выделением энергии при рекомбинации электронов и положительных ионов. Типы электрических разрядов весьма разнообразны и сильно завися от состава газа и внешних условий.

Плазма.

Вещество, содержащее смесь нейтральных атомов, свободных электронов и положительных ионов, называют плазмой. Плазма, возникающая в результате сравнительно слаботочных электрических разрядов (напр. в трубках “дневного света”) характеризуется весьма малыми концентрациями заряженных частиц по сравнению с нейтральными ( Условия возникновения тока  3).

Обычно ее называют низкотемпературной, поскольку температура атомов и ионов близка к комнатной. Средняя же энергия гораздо более легких электронов оказывается гораздо большей. Т.о. низкотемпературная плазма является существенно неравновесной, открытой средой. Как отмечалось, в подобных средах возможны процессы самоорганизации. Хорошо известным примером является генерация в плазме газовых лазеров высоко упорядоченного когерентного излучения.

Плазма может так же может быть термодинамически равновесной. Для ее существования необходима очень высокая температура (при которой энергия теплового движения сравнима с энергией ионизации).

Такие температуры существуют на поверхности Солнца, могут возникать при очень мощных электрических разрядах (молнии), при ядерных взрывах. Такую плазму называют горячей.

Атмосферное электричество.

Земля является достаточно хорошим проводником электрического тока (по сравнению с сухим воздухом).

На высоте около 50 км ионизирующее космическое излучение обуславливает наличие ионосферы — слоя сильно ионизированного газа. Измерения показывают, что между ионосферой и поверхностью Земли существует огромная разность потенциалов (около 5000000 В), причем ионосфера имеет положительный по отношению к Замле заряд. Наличие разности потенциалов между Землей и “небом” приводит к появлению тока очень малой плотности ( Условия возникновения тока  4A/ Условия возникновения тока  5) даже в таком плохом проводнике как воздух. Полный ток, приходящий на поверхность планеты, весьма велик (ок. Условия возникновения тока  6А), а выделяемая им мощность сравнима с мощностью всех построенных электростанций ( Условия возникновения тока  7Вт).

Возникают естественные вопросы о механизме поддержания указанной разности потенциалов и о причинах, по которым ее наличие до сих пор никак не используется человеком.

В настоящее время установлено, что основным механизмом, заряжающим “небо” относительно Земли являются грозы. Капли воды и кристаллы льда, перемещаясь вниз к основанию грозовой тучи собирают на себе имеющиеся в атмосфере отрицательные заряды и тем самым заряжают нижнюю часть грозового облака отрицательным электричеством до потенциалов, во много раз превосходящих потенциал Земли. В результате между Землей и тучей возникает очень большое электрическое поле, направленное в противоположную сторону по сравнению с полем, существующем в безоблачную погоду. Вблизи выступающих с поверхности Земли проводящих предметов это поле еще усиливается и оказывается достаточным для ионизации газа, которая нарастает по лавинообразному закону. В результате возникает очень мощный электрический разряд, называемый молнией. Вопреки бытующему мнению, молния начинается на Земле и бьет в тучу, а не наоборот.

Характерное для ясной погоды электрическое поле напряженностью 100В/м не удается не только использовать, но даже ощутить, хотя на равной росту человека высоте при его отсутствии оно создает разность потенциалов около 200В. Причиной этого является низкая проводимость воздуха и, как следствие, малые плотности текущих на поверхность Земли токов. Введение в электрическую цепь хорошего проводника (человека), шунтирующего двухметровый воздушный столб, практически не изменяет суммарного сопротивления цепи “небо-Земля”, ток в которой остается неизменным. Вызываемое им падение напряжения на теле человека составляет около U=IR=0.2мкВ, что лежит значительно ниже порога чувствительности нашего организма.

Электрический ток в живых тканях.

Важная роль электрических импульсов для жизнедеятельности организмов предполагалась еще более 200 лет назад. Сейчас известно, что эти импульсы используются для обеспечения управления работой органов и передачи информации между ними в процессе жизнедеятельности. Роль кабелей для передачи сигналов в сложнейшем “биологическом компьютере” играют нервы, основу которых составляют узко специализированные клетки — нейроны. Основные функции этих клеток — прием, обработка и усиление электрических сигналов. Нейроны связываются друг с другом в “сеть” при помощи специальных удлиненных выростов — аксонов, выполняющих функции проводников. Исследования распространения электрических сигналов в аксонах выполнялись совместно биологами, химиками и физиками в 30-60 годах нашего века и явились одним из первых удачных примеров плодотворного сотрудничества представителей смежных естественных наук.

Как оказалось, свойства электрических импульсов, распространяющихся в аксонах существенно отличаются от привычных для электротехники: 1) скорость распространения импульсов по аксону оказывается на несколько порядков меньше характерных для металлических; 2) после прохождения электрического импульса существует “мертвое” время, в течение которого распространение следующего импульса невозможно; 3) существует пороговое значение напряжения (импульсы с амплитудой ниже пороговой не распространяются); 4) при медленном нарастании напряжения даже до превышающего порог значения импульс по аксону не передается (“аккомодация”).

Перечисленные нехарактерные для традиционной электротехники особенности проводимости аксонов нашли объяснения в рамках весьма специфического электро-химического механизма, центральная роль в котором принадлежит полу проницаемой для ионов клеточной мембране, отделяющей содержащий аномально высокую концентрацию ионов K+ и низкую — Na+ внутренний объем клетки (и ее аксона) от окружающей среды, заполненной физиологическим раствором. В результате хаотического теплового движения частиц через границу между областями с различными концентрациями положительных ионов возникают диффузионные потоки (K+ — из клетки, Na+ — внутрь ее), скорости которых регулируются проницаемостью клеточной мембраны и электрической разностью потенциалов по обе стороны от нее. Изменения проницаемости мембраны для каждого из ионов приводит к изменению количества заряженных частиц, пересекающих границу и, следовательно, к изменению электрического потенциала аксона относительно внешней среды. Как показали опыты, проводимость участка мембраны изменяется в зависимости от приложенной к нему разности потенциалов. Т.о. подаваемый на участок аксона электрический импульс изменяет на небольшое время (зависящее от свойств аксона) проводимость мембраны, что ведет к перераспределению зарядов, усилению импульса и формированию его заднего фронта. При этом аксон одновременно играет роль проводника и “усиливающих подстанций — ретрансляторов”, что позволяет избежать затухания сигналов, передаваемых в организме на достаточно большие расстояния.

Интересно, что весьма сходную проблему с той, что была решена природой, незадолго до раскрытия механизма проводимости аксона пришлось решать в радиотехнике при попытке организовать транс Атлантическую кабельную связь. Для того, чтобы избежать затухания и искажения сигнала в длинной линии, кабель пришлось разделить на сравнительно короткие звенья, между которыми были помещены усилители. Опыт, накопленный физиками при создании длинных линий кабельной связи существенно облегчил решение проблемы о механизме электропроводности аксона.

Воздействие электрического тока на организм человека.

Поражения возникают в результате действия технического или атмосферного электрического тока. Неумелое использование электрических приборов, как в технике, так и в быту, а также неисправность этих приборов приводят к электротравмам. Смертность от поражения электрическим током составляет 9-10% всех случаев, что в 10-15 раз превышает смертность от других травм.

Электротравмы случаются чаще в весенне-летнее и осеннее время, когда повышается потливость кожных покровов, а также возникает возможность поражения молнией во время грозы, когда отмечается значительное скопление электрических зарядов в атмосфере. При этом путь молнии к земле может быть как бы “ориентирован” стоящим в поле деревом, более высоким деревом в лесу или любой металлической конструкцией. Поэтому находиться под ними в грозу небезопасно. Чтобы избежать повреждающего воздействия молнии в помещении, нужно закрывать окна, форточки, отключать из сети все электрические приборы.

С целью классификации, нужно провести границу приблизительно на цифре 1000 вольт, разделяя низковольтные и высоковольтные повреждения. Низковольтные повреждения — ожоги с ограниченной поверхностью поражения, причиняемые вольтовой дугой или вспышкой. Повреждения, производимые высоким напряжением (больше чем 1000 вольт), также возникают дугой или вспышкой, но, кроме того, причиняют большие разрушающие повреждения проводящего типа, которые могут привести к гибели ткани далеко от места контакта.

Электрические повреждения лучше всего объяснять через превращение электрической энергии в теплоту, которая затем приводит к прямому разрушению тканей. Кроме того, ток высокого напряжения оказывает прямой разрушающий эффект на клетки. Соотношение между напряжением, сопротивляемостью и током описывается в известном законе Ома:

I = E/R, где

I — равняется току в амперах,

E — напряжение в вольтах,

R — сопротивляемость в омах.

При высоком напряжении ток проходит через ткани тела и от источника (рана на входе) к земле (рана на выходе).

Организм является проводником объема тока при наиболее выраженном повреждении ткани в местах большой плотности и высокого значения в амперах. Отсюда, больше всего страдают от повреждения конечности, чем туловище и места входа и выхода напряжения тока. Рана на входе имеет коженую поверхность, ткани напряжены из-за коагуляции и некроза. Рана на выходе обычно обширнее, потому что ток должен вырваться из организма, оставляя большое отверстие. Есть вероятность нескольких электрических каналов внутри тела, что приводит к множественным выходам, подвергая, таким образом, любой орган или структуру риску электрического поражения.

Дугообразные повреждения обычно сопровождаются высокочастотными повреждениями. Дугообразные повреждения лучше всего понять, если представить разрушение тканей от выделения ионизированных частиц между полюсами различных электрических зарядов. Дуги возникают, когда ток проходит от тела к земле или из одной части тела в другую, например, от руки к грудной стенке. Когда образовалась дуга, происходит резкое падение в напряжении, но если источник тока действует, дуга продолжается между двумя полюсами. Расстояние, за которое дуга может проходить, увеличивается на 2-3 см на каждые 10,000 вольт. Температура дуги может подниматься на 20,000 C и обычно приводит к небольшому, скрытому поражению, которое является глубоко разрушающим. Самое большое повреждение происходит обычно глубоко в конечностях и считается, что это происходит из-за близкого расположения к кости, которая обладает самой высокой сопротивляемостью.

Электрическое повреждение осложняется феноменом «не освобождения» из-за тетанической сократимости мышц в контакте с изменяющимся током. При соприкосновении с высоковольтным проводом, мышцы-сгибатели предплечья подвергаются усиленной контрактуре, что делает невозможным оторваться с источником отсюда, название «не освобождение». Такие контрактуры приводят к потоку низкочастотного тока величиной над болезненным стимулом, но ниже требуется причинить тетанию дыхательных мышц. Больной избегает трудной ситуации, если только он находится без сознания и падает в стороне от источника тока.

Глубокие проводящие электрические повреждения характеризуются глубоким массивным разрушением мышц и глубоким отеком под здоровой кожей. Кроме того, глубокие проводящие повреждения могут воздействовать на удаленные участки ЦНС и на полости грудной клетки и живота. Раны входа и выхода тока являются отличительными признаками глубоких проводящих повреждений.

Дугообразные повреждения производят локальные, очень глубокие области коагуляционного повреждения, такие как запястье, локоть, промежность и подмышечная область.

Поверхностные термические ожоги случаются при электрических повреждениях из-за вспышки или возгорания одежды, захватывая обширные участки тела и тем самым, усложняя метаболическую травму больного. Такие ожоги могут действовать на проксимальные участки конечностей, требуя в последующем ампутации, образовывая нестабильные рубцы на месте будущих протезов.

Сопутствующие повреждения случаются в тех случаях, когда человека отбрасывает от источника тока или он падает с высоты. Возможные сопутствующие повреждения: интракранеальная травма, спинные повреждения, перелом длинных костей, грудные и интра-абдоминальные паренхиматозные повреждения. Общий эффект тканей от электрических воздействий в каждой системе органа переводится в специфическое, клиническое повреждение: некоторые из них считаются острыми и угрожающими жизни, другие могут оказывать постепенное действие через месяцы и годы после несчастного случая. Ниже приводится список как острых, так и поздних эффектов высоковольтных повреждений.

Остановка сердца.

Фибрилляция желудочков.

Нарущение ритма.

Повреждение коронарной артерии с или без инфаркта миокарда.

Непосредственное повреждение миокарда.

Вторичная острая почечная недостаточность.

Обширное повреждение ЦНС.

Состояние без сознания, конвульсии и кома.

Поздняя гемиплегия или синдром ствола головного мозга.

Позвоночник

Вазомоторная нестабильность.

Дистрофия симпатических рефлексов.

Разрыв стенки живота и эвисцерация.

Нединамичный илеус и атония желудка.

Желудочные или поджелудочные язвы.

Поздняя висцеральная перфорация.

Фистула.

Панкреатит и «электрический диабет».

Прямое повреждение печени и коагулопатии.

Быстрая потеря калия.

Остановка дыхания.

Прямое повреждение грудной стенки.

Плевральное повреждение и гидроторакс.

Долевой пульмонит.

Бронхиальная перфорация.

Пневмоторакс с переломом ребер или без него.

Прямое повреждение глазного яблока.

Отторжение роговичного или оптического нерва.

Катаракта.

Световая макулопатия.

Сосуды

Непосредственное повреждение.

Поздний разрыв сосудов.

Внутреннее повреждение.

Повреждение питательных структур артерий и мышц.

Внутриутробная смерть.

Спонтанный аборт.

Острое подавление костного мозга.

Различают четыре степени электротравм:

1 степень — у пострадавшего отмечается судорожное сокращение мышц без потери сознания;

2 степень — судорожное сокращение мышц у больного сопровождается потерей сознания;

3 степень — у пострадавшего наблюдается не только потеря сознания, но и нарушение сердечной деятельности и дыхания;

4 степень — больной находится в состоянии клинической смерти.

Клиническая картина поражения электрическим током складывается из общих и местных признаков. Субъективные ощущения пострадавшего при прохождении через него электрического тока разнообразны: легкий толчок, жгучая боль, судорожные сокращения мышц, дрожь и др. Признаки: бледность кожных покровов, синюшность, повышенное отделение слюны, может быть рвота; боли в области сердца и мышц разной силы, непостоянны. После устранения воздействия тока пострадавший ощущает усталость, разбитость, тяжесть во всем теле, угнетение или возбуждение. Потеря сознания наблюдается у 80% пострадавших. Больные в бессознательном состоянии резко возбуждены, беспокойны. У них учащен пульс, возможно непроизвольное мочеиспускание.

При электротравме, вызвавшей судорожные сокращения мышц или падение с высоты, могут наступить различные переломы костей и вывихи суставов. При электротравме с обширными ожогами поражение внутренних органов, как правило, выражено значительно меньше. Это объясняется тем, что обуглившиеся и обоженные ткани создают как бы препятствие для проникновения тока за пределы ожога. Электрические ожоги небольшой площади сразу же после воздействия тока имеют четкие границы, вокруг омертвевших тканей черного цвета имеется более светлый ободок. Отек окружающих тканей развивается очень быстро. Боль в области электроожога, как правило, отсутствует.

Первая помощь при поражении электрическим током.

Первая помощь во всех случаях должна начинаться с немедленного освобождения пострадавшего от дальнейшего контакта с цепью электрического тока. Самым простым способом является отключение цепи выключателем или рубильником, вывинчиванием “пробки” и т.д. Но если они находятся далеко или по каким-то другим причинм отключить их невозможно, то следует оборвать или перерубить токонесущий провод, отвести провод в сторону от пострадавшего. Нужно быть осторожным, чтобы спасатель не стал частью электрической цепи- перерубая провод, нужно обернуть сухой шерстяной, шелковой или прорезиненной материей ручку инструмента, если она сделана не из сухого изолятора. Рубить провода во избежание короткого замыкания следует по отдельности. Обесточивая пострадавшего, оказывающий помощь должен стоять на каком-либо сухом резиновом, деревянном, стеклянном или другом предмете, сделанном из диэлектрика (изолятора).

Также спасатель должен иметь в виду, что его может поразить электрическая дуга, поскольку ток высокого напряжения создает эту дугу вокруг пострадавшего на расстоянии 10 футов (1 фут равняется 3.3 метра).

Отсюда следует, что к пострадавшему нельзя прикасаться до тех пор, пока источник тока не будет обезврежен или убран от больного при помощи не проводящего тока предмета, например, куском сухого дерева.

Когда пострадавшего освободили, его нужно сразу осмотреть, проверить дыхание и сердечную деятельность и измерить жизненно важные показатели, обеспечить доступ свежего воздуха: расстегнуть воротник и пояс брюк или юбки, другие стягивающие предметы одежды, уложить на ровное место. Если сердцебиение и дыхание, даже слабое, сохранены, можно давать вдыхать нашатырный спирт, следует обрызгать лицо холодной водой, растереть тело одеколоном, тепло укутать пострадавшего, немедленно вызвать врача. При сохраненном сознании можно дать болеутоляющие лекарства, успокаивающие и сердечные средства. На пораженную электроожогом кожу накладывают повязку, желательно из стерильного бинта, смоченного разведенным спиртом.

При выраженных расстройствах дыхания и сердечной деятельности, а тем более при их полной остановке следует немедленно, не теряя ни минуты, приступать к искусственной вентиляции легких и непрямому массажу сердца и продолжать их до полного восстановления самостоятельного сердцебиения и дыхания. Иногда на это может потребоваться 3-4 часа и больше. Прекращать эти реанимационные мероприятия до полного восстановления сердцебиения и дыхания нельзя, во всяком случае, до приезда врача. Продолжать их в случае необходимости нужно и в машине во время транспортировки потерпевшего в лечебное учреждение. Только появление признаков истинной биологической смерти (багровые трупные пятна на коже нижележащих частей тела и трупное окоченение мышц, резко затрудняющее движения во всех суставах) могут служить оправданием для прекращения попыток оживить пострадавшего. Ни в коем случае нельзя закапывать в землю пораженного электрическим током или молнией человека или же обливать его водой — это вызывает охлаждение организма, затрудняет дыхание и работу сердца, загрязняет ожоговые поверхности землей, что может привести к развитию столбняка и газовой гангрены, и, что самое главное, исключает возможность немедленно приступить к искусственному дыханию и массажу сердца, которые являются единственными надежными и эффективными мерами борьбы с “мнимой смертью” при тяжелых поражениях электрическим током.

Вероятные причины поражения.

Возможны следующие причины поражения электрическим током:

1. Наведенное напряжение:

Высоковольтные линии передачи переменного тока могут наводить высокое переменное напряжение в проходящих рядом низковольтных линиях электропередачи, линиях связи, любых протяженных проводниках, изолированных от земли. Может возникнуть даже на автомашине.

2. Остаточное напряжение:

Линия электропередачи имеет большую электрическую емкость. Поэтому если линию отключить от напряжения, некоторое время все равно будет сохраняться разность потенциалов, и одновременное прикосновение к разным проводам приведет к электрическому удару. Однократный разряд линии с помощью заземленного проводника может оказаться недостаточным.

Опасное остаточное напряжение может сохраняться в радиоаппаратуре, в составе которой есть конденсаторы с емкостью порядка миллифарад.

3. Статическое напряжение:

Возникает в результате накопления электрического заряда на изолированном проводящем объекте.

4. Шаговое напряжение:

Возникает между ногами из-за того, что они находятся на разном расстоянии от упавшего на землю провода.

5. Повреждение изоляции. Причины могут быть следующие:

заводской брак;

старение;

климатические воздействия, загрязнение;

механическое повреждение, например, инструментом;

механический износ, например, на изгибе;

преднамеренная порча.

6. Случайное прикосновение к токоведущей детали — из-за незнания, спешки, действия отвлекающих факторов.

7. Отсутствие заземления:

В заземленной аппаратуре в случае пробоя изоляции на корпус происходит короткое замыкание, и сгорают предохранители.

8. Замыкание в результате аварии:

Например, сильный ветер или другая причина может вызвать повреждение воздушной линии электропередачи и падение провода на проходящий параллельно воздушный провод радио или телефона, после чего считающийся низковольтным провод оказывается под высоким напряжением.

9. Несогласованность:

Один индивидуум работает в аппаратуре, другой подает на нее напряжение.

Опасные факторы в быту и вне дома.

Не известно ни одной электротравмы от эксплуатации электробритв.

Из бытовой техники наиболее опасны стиральные машины: они устанавливаются во влажном помещении, вблизи водопровода, и электрический кабель бросается, как правило, просто на пол.

Опасны электронагреватели. Электрические приборы, имеющие металлический корпус, опаснее приборов в корпусе из пластмассы.

В домашних условиях случаются смертельные исходы из-за одновременного прикосновения к поврежденному электроприбору и к батарее водяного отопления или водопроводной трубе. (Вывод: все трубы покрывать толстым слоем краски.)

Меры безопасности в быту и вне дома.

Перед включением электрической вилки в розетку убедитесь, что она именно от того прибора, который Вы собираетесь включить. Также после выдергивания вилки из розетки проверьте, что не ошиблись. Если провода шнуры от соседних устройств похожи, сделайте их разными: оберните изоляционной лентой или покрасьте. Не беритесь за электрическую вилку мокрой рукой. Не вбивайте гвоздь в стену, если не знаете, где проходит скрытая электропроводка.

Следите за тем, чтобы розетки и другие разъемы не искрили, не грелись, не потрескивали. Если контакты потемнели, почистите их и устраните причину неплотного соединения.

Не рекомендуется ходить под высоковольтными линиями электропередачи. Создаваемое ими в воздухе электрическое напряжение вредно действует на организм.

Не следует приближаться к оборванному проводу: может поразить шаговое напряжение. Если все-таки приходится пересекать опасную зону возле лежащего на земле провода, надо делать это бегом: чтобы одновременно только одна нога касалась почвы.

При входе в троллейбус не следует прикасаться рукой к его борту. Корпус троллейбуса может находиться под напряжением из-за пробоя изоляции. Лучше впрыгивать в троллейбус, а не входить; выпрыгивать, а не выходить: чтобы не было ситуации, когда одна нога на земле, а другая — на подножке троллейбуса. Электрички и трамваи в этом отношении не опасны, потому что всегда заземлены.

С Еллинек пишет: «Главная особенность электротравмы в том, что напряжение нашего внимания, наша твердая воля в состоянии не только ослабить действие электрического тока, но иногда совершенно его уничтожить. Сокрушительную силу падающей балки или взрыва нельзя ослабить мужеством и героической выдержкой, но это вполне возможно по отношению к действию электрического удара, если он наступает в период напряженного внимания. Действительно, кто слышит выстрел, не видя стреляющего, может погибнуть от внезапно наступившего шока, тот же, кто смотрит на стреляющего или сам стреляет, шоку не подвержен.» (цитируется по кн. Манойлова В.Е.)

Опасные факторы на производстве.

Наиболее опасные (в отношении электротравм) отрасли хозяйства — сельское хозяйство и строительство. Причины — в широком использовании временной электрической проводки (брошенных на землю или кое-как подвешенных проводов, попадающих в лужи, повреждаемых транспортными средствами).

Примерно 30 % электротравм на установках с напряжением 65 Вольт и ниже происходит от того, что в результате ошибки или поломки они оказываются под напряжением 220 или 380 Вольт. Поверхность изолирующего материала может стать электропроводящей в результате загрязнения и/или смачивания.

Наиболее часто жертвами становятся электромонтеры, радиомонтеры, электросварщики, строительные рабочие. Много случаев электрического поражения имеет место на производственных установках, в которых используются химически активные вещества, разрушающие изоляцию, а также в запыленных производственных помещениях (пыль снижает изолирующие свойства конструкций; покрытый влажной грязью изолятор становится проводником).

Опасны влажные помещения. Пробой изоляции может произойти в скрытой проводке — в месте прохождения провода через отверстие в стене. Поражение может наступить от одновременного контакта с влажной поверхностью (стеной, полом) и деталью водопровода или водяного отопления.

Больше половины поражений на электроосветительных установках случается при замене ламп.

Поражения при совершении работ чаще имеют место в начале смены, перед обеденным перерывом и к концу смены. Объяснить это можно усталостью — ослаблением внимания, снижением сопротивляемости организма. Опасна временная прокладка кабеля по полу, по земле. Известны смертельные случаи из-за прикосновения токоведущих проводов к крышкам клеммных коробок.

Из-за отсутствия единообразия в конструкциях токоведущих устройств случаются поражения при необдуманном совершении привычных действий.

Заключение

Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.

Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.

Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

Литература

[Электронный ресурс]//URL: https://drprom.ru/referat/rabota-i-moschnost-toka/

1. Агунов М.В., Агунов А.В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, №4, С. 53-56.

2. Агунов М.В., Агунов А.В., Вербова Н.М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, №7, С. 45-48.

3. Агунов М.В., Агунов А.В., Вербова Н.М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, №2, С. 30-33.

4. Агунов А.В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, №2, С. 47-50.

5. Детлаф А.А.,Яворский Б.М. Курс физики.-М.: Высшая школа,1989.

6. Трофимова Т.И. Курс физики.-М.:Высшая школа, 1993.

7. Меклап С. Физика. Учебное руководство. В 2-х томах. Пер. с англ.Е.И. Бутикова. — М.: Наука,1992.

8. Калашников С.Г., Электричество, «Наука», Москва, 1964.