Аэродинамическое сопротивление автомобиля (2)

Современная автомобильная аэродинамика решает множество задач. Специалисты должны не только добиться минимального сопротивления воздуха, но и отследить величину и распределение по осям подъемной силы, ведь нынешние автомобили достигают тех скоростей, на которых самолеты уже отрываются от земли. Необходимо предусмотреть и доступ воздуха для охлаждения двигателя и тормозных дисков, продумать вентиляцию салона, расположив в нужных местах отверстия для забора и вытяжки воздуха. Аэродинамика определяет уровень шумов в салоне, заботится о том, чтобы захватывающие грязь воздушные потоки не попадали на стекла, зеркала, фонари и ручки дверей. С ростом скорости не должно меняться и качество очистки лобового стекла. В общем, круг задач необычайно широк, а решение одной проблемы тесно связано с другой: например, необходимость делать воздухозаборники для охлаждения тормозов или борьба с подъемной силой ведет к увеличению лобового сопротивления. И разобраться в этой головоломке, найти оптимум под силу лишь настоящим мастерам своего дела. Мы же рассмотрим только два главных аспекта автомобильной аэродинамики: проблему сопротивления воздуха и прижимной силы.

Аэродинамическое сопротивление

Наверное, каждый слышал о том, что сила сопротивления воздуха пропорциональна квадрату скорости – столь быстро нарастает противодействие движению в процессе разгона. Впечатляет, но как это соотнести с параметрами автомобиля? Для этого нужно лишь перейти в термины механической работы, и тогда получится, что отбираемая от двигателя мощность находится аж в кубической зависимости от скорости! Только представьте, с каким трудом даются автомобилю последние десятки километров в час. В таких условиях даже значительная прибавка мощности мотора не в состоянии существенно увеличить максимальную скорость. Таким образом, задача снижения лобового сопротивления – приоритетная задача не только для аэродинамики, но, в свете борьбы за экологию, и для всего автомобилестроения в целом.

Сила сопротивления

— так рассчитывается сила аэродинамического сопротивления. S – площадь поперечного сечения (м2), V – скорость воздушного потока (м/c), p – плотность воздуха (1,23 кг/м3), Cx — коэффициент аэродинамического сопротивления. То есть повлиять на величину силы при заданной скорости можно только двумя путями: изменив либо Cx, либо площадь S. Решение можно искать по двум направлениям. Первое – это уменьшение площади поперечного сечения автомобиля, иными словами, создание более узкого и низкого кузова. Путь весьма эффективный, ибо сопротивление воздуха напрямую зависит от размеров объекта, но, к сожалению, совершенно расходящийся с нынешней тенденцией к увеличению габаритов автомобилей. И увеличению, стоит отметить, немалому, ведь в моду активно входят кроссоверы, вторгающиеся даже в совершенно чуждый им сегмент спортивных, скоростных автомобилей, где требования к аэродинамике предельно высоки. А значит остается второй и единственный вариант – оптимизация процесса обтекания кузова, критерием совершенства которого как раз и является коэффициент аэродинамического сопротивления Cx (или Cw, как иногда встречается в литературе).

5 стр., 2404 слов

Мореходные качества судна: остойчивость и способы её улучшения; ...

... поэтому, если у судна обеспечена поперечная остойчивость, то продольная остойчивость обеспечена заведомо. Факторы, влияющие на остойчивость судна , которые имеют сильное влияние на остойчивость судна. К таким ... в 800 раз больше плотности воздуха, то и сопротивление воды значительно больше воздушного сопротивления. Величина силы сопротивления зависит от скорости и режима движения корабля, формы ...

Величина Cx определяется опытным путем. Например, у так называемого обтекаемого тела, похожего на вытянутую каплю воды, Cx равен 0,04, у сферы – 0,47, у куба, грань которого перпендикулярна потоку, — 1,05, а если его повернуть, так чтобы угол между воздушным потоком и гранями составлял 45 градусов, то Сх снизится до 0,8. Примерно в том же диапазоне находится и Сх практически всех автомобилей, разве что нижняя граница поднимается примерно до 0,25. Факторов, влияющих на Cx автомобиля, несколько: во-первых, это внутреннее сопротивление, возникающее при прохождении воздуха через подкапотное пространство и салон, во-вторых, сопротивление трения между воздушным потоком и поверхностью кузова, и, в-третьих, сопротивление формы, проявляющееся главным образом в избыточном давлении перед автомобилем и разряжением позади него. Внутреннее сопротивление составляет около 12% от общей величины, и пока особых успехов в этой области не наблюдается: напротив, все более и более мощные моторы современных автомобилей требуют все больше воздуха для охлаждения. Например, в пределе 300-сильный бензиновый двигатель выделяет в виде тепла около 450кВт – этого хватило бы для отопления нескольких особняков! Соответственно, растут размеры радиаторов, уплотняются моторные отсеки, увеличивается сопротивление воздуха… Существенные же улучшения здесь возможны лишь при переходе на более эффективные электродвигатели, но пока они так и остаются технологией будущего.

Пограничный слой воздушного потока

Красные стрелки – вектора, показывающие направление и скорость движения отдельных частиц. В данном случае они параллельны друг другу, а потому поток находится в ламинарном состоянии. Сопротивление поверхностного трения так же вносит свой 10-процентный вклад в величину Cx. Вообще, наличие столь ощутимого трения между воздухом и кузовом может показаться странным, но оно действительно имеет место: прилегающий к поверхности слой воздуха сталкивается с микронеровностями покрытия и тормозиться — образуется так называемый пограничный слой. Пока это течение находится в ламинарном состоянии, то есть все его частицы движутся в одном направлении, толщина пограничного слоя невелика (около нескольких миллиметров) и сопротивление трения небольшое. Но с переходом в турбулентное состояние, когда поток «спотыкается» о более крупное препятствие, и траектории его частиц становятся хаотичными, пограничный слой расширяется, а вместе с ним увеличивается и трение – воздух словно становится более вязким. Таким образом, от разработчиков в данном случае требуется обеспечение гладкости кузова, дабы пограничный слой дольше оставался ламинарым. А для этого нужно уменьшать зазоры кузовных элементов, закрывать уплотнителями щели между деталями. Помогает и придание поверхностям небольшой кривизны – прилегающий поток ускоряется, давление в нем падает, и траектории частиц упорядочиваются. К сожалению, в целях экономии этими мерами в последнее время частично пренебрегают, например, уплотнители по периметру лобового стекла или вокруг фар сейчас встретишь нечасто.

9 стр., 4194 слов

Влияние технического состояния автомобилей на токсичность отработавших газов

... токсичности ее допустимая концентрация в атмосферном воздухе не должна превышать 1мт/м 3 . Известны случаи трагической гибели людей, запускавших двигатели автомобилей ... на стенках камеры сгорания, увеличением потерь в трансмиссии и сил сопротивления ... 170 вредных компонентов, из них около 160 - производные углеводородов, прямо ... на поверхности почвы и растений, в конечном счете накапливается в верхнем слое ...

Распределение давления воздуха на движущийся автомобиль

Красному соответствуют зоны высокого давления, синему – низкого. Обратите внимание на возникающее разряжение позади заднего стекла и, в особенности, за крышкой багажника и бампером – именно эта область главным образом и определяет аэродинамику кузова. И чем меньше она, тем лучше. И, наконец, сопротивление формы или сопротивление давления – главный фактор, определяющий значение Cx. Причина его возникновения понятна – спереди на автомобиль давит набегающий поток воздуха, а позади его «оттягивает» назад зона разряжения, образующаяся в результате отрыва потока от резко заканчивающегося кузова. Решение проблемы тоже, казалось бы, очевидно – нужно придать автомобилю такую форму, чтобы он плавно рассекал воздух и опять-таки плавно, без отрыва потока от поверхности, позволял ему сойтись позади себя. Но загвоздка в том, что в соответствии с такими требованиями автомобиль должен напоминать дирижабль (точнее, его половину, отрезанную в продольной плоскости), то есть иметь минимум граней и, главное, очень длинную, постепенно сужающуюся заднюю часть. Разумеется, о рациональной компоновке в данном случае говорить трудно. Так что задача перед инженерами стояла непростая…

Ретроспектива

Первый автомобиль, преодолевший отметку в 100 км/ч (1899 г.).

Приводился в движение двумя электромоторами суммарной мощностью 67 л.с. Масса – 1000 кг. Максимальная скорость 105 км/ч. В начале прошлого века, когда автомобили только зарождались, их скорость едва превышала 40км/ч, а форма походила на карету, об аэродинамике, естественно, не задумывались – при величине Cx около единицы те модели едва ли могли поспорить по обтекаемости даже с пресловутым кирпичом. Однако все же находились энтузиасты, уделявшие этому внимание. Главным образом, то были разработчики рекордных автомобилей и тех, что мы бы сейчас назвали «концепт-карами». Над формой долго не думали – её перенимали из других областей техники, таких как мореплавание или авиация. Соответственно, автомобили напоминали корабли, дирижабли, торпеды и другие тела вращения. Самым же первым представителем этой плеяды была машина Камилла Дженатци, на которой сам создатель впервые в истории преодолел рубеж в 100км/ч – произошло это аж в 1899 году. Cx того автомобиля, конечно, не известен, но, учитывая немалую мощность в 67 л.с., можно предположить, что его аэродинамика все же была далека от совершенства – сопротивление увеличивал водитель, возвышавшийся над кузовом, и совершенно неприкрытые элементы подвески и шасси. Более удачной попыткой создать обтекаемый автомобиль стала Alfa Romeo 40-60 HP – спортивная машина 1913 года, на шасси которой был установлен кузов в форме дирижабля. Полностью укрывающий пассажиров корпус, интегрированное шасси и компактные узлы подвески позволили при мощности 70 л.с. достигать уже 139 км/ч, что свидетельствует о весьма неплохой, а по тем временам и вовсе выдающейся, аэродинамике.

9 стр., 4115 слов

Технология окраски кузова автомобиля

... подготовке поверхности автомобиля к окраске очень важно тщательно выполнить рихтовочные работы по металлу, сварку, пайку и зачистку, т.е. придать поверхности кузова правильную геометрическую форму. Качественное выполнение ... шпатлевки и отвердителя должно быть 100:3,2. Срок годности шпатлевки составляет 1 год. 4) Растворители, разбавители и смывки Их применяют для того, чтобы лакокрасочные ...

Уникальность автомобиля Tropfenwagen (1921 г.) состояла не только в потрясающе низком Сх (0,28), но и необычной компоновке с W-образным 6-цилиндровым двигателем в хвостовой части. Всего было выпущено около 100 таких моделей. Но постепенно подход к проектированию обтекаемых кузовов менялся. Опыт в самолетостроении, накопленный за время Первой мировой войны, помог разработчикам взглянуть на проблему шире — они уже не стремились просто перенять удачные с точки аэродинамики формы, а начали их комбинировать, совмещать, пытаясь получить приемлемое для автомобиля решение. И быстро преуспели в этом деле. В 1921 году инженером Эдмундом Румплером был создан Tropfenwagen – «машина-капля». Необычный автомобиль имел сильно зауженную в горизонтальной проекции переднюю и заднюю части, плавный изгиб крыши и овальную, вытянутую кабину – набегающий воздух он направлял не вверх и вниз, а в стороны. Проведенные в последствии, в 1979 году, компанией Volkwagen испытания показали, что Cx Tropfenwagen равнялся 0,28! И это при том, что выступающие за габариты колеса увеличивали сопротивление примерно на 50%. К сожалению, спросом экстравагантный автомобиль не пользовался – не помогал ни низкий расход топлива, ни появление удлиненной версии.

Одна из идеальных аэродинамических форм автомобиля – Cx равен 0,14-0,16. Возможны и другие, но их Cх будет так же находится в окрестности 0,15.

Сравнение форм задка. 1 – укороченная форма, характерная для серийных автомобилей 20-40-годов; 2 – «оптимальная» форма предложенная в 1934 г; 3 – идеальная форма. В последнем случае имеет место безотрывное обтекание кузова, а в 1-ом и 2-ом – точка отрыва располагается в месте расхождения с оптимальной формой. Таким образом, 2-ой вариант с крутым срезом задка оказывается предпочтительнее наклонной формы 1, ибо поток отрывается от кузова заметно позже. Тем временем Институтом аэродинамических исследований в Геттингене (Германия) была выведена «идеальная» форма, Сх которой равнялся 0,16. В профиль такой кузов походил на современные Porsche 911, но имел более заостренную и узкую переднюю и заднюю часть. Однако если для спортивных двухместных автомобилей эта форма еще подходила — можно вспомнить великолепный Adler Triumph 1934 года – то для «гражданских» она казалась почти бесполезной – слишком нерационально использовался внутренний объем длинного «хвоста». И все же попытки приблизиться к такому идеалу в серийном производстве предпринимались долго, а одной из самых успешных стала Tatra-87 1940 года. Угол наклона задка у неё был больше, но сильно зауженная сзади кабина и плавно спадающая подоконная линия позволили снизить Сх до 0,38.

Впрочем, к тому времени смысла в подобных хитростях уже не было – в 1934-ом исследователи пришли к выводу, что выгоды от покатой, вытянутой задней части кузова нет, если она не повторяет идеальную форму – как только наклон задка превышает определенное значение, поток срывается, и продолжающаяся часть хвоста оказывается в зоне разряжения. Следовательно, её можно просто отбросить без ущерба для аэродинамики, а в некоторых случаях даже на этом и выиграть, ведь в зоне разряжения оказывается меньшая площадь поверхности. Что, собственно, чуть позже и продемонстрировал автомобиль конструктора Камма под индексом К5 – его Сх равнялся 0,37. А это означало, что впервые аэродинамика и практичность нашли точку пересечения, но началась война…

14 стр., 6764 слов

Проектирование участка по кузовному ремонту и окраске кузовов

... надежности и долговечности автомобиля. В данном дипломном проекте разрабатывается участок по кузовному ремонту и окраске кузовов. Данный выбор обусловлен тем, что кузов автомобиля является одной из ... исправном состоянии, и находиться под постоянным надзором руководителя производственного участка. Стационарное оборудование будет установлено на фундамент и закреплено специальными креплениями. Опасные ...

Первым автомобилем с оптимизированной формой укороченного задка был опытный К5 конструктора Камма, построенный на шасси Mercedes-Benz 170V в 1938 году. Его Сх равнялся 0,37 (в отличие от донора 170V, у которого Cx был 0,55) Надо отметить, что все упомянутые наработки почти не коснулись серийных автомобилей 20-40-ых годов. Конечно, за этот период Сх в среднем снизилися с 0,8 до 0,55, но в основе этого лежали лишь компоновочные и стилистические изменения – сохраняя выступающие крылья и фары, автомобили становились более вытянутыми и округлыми. Те же модели, что внешне казались обтекаемыми, только подражали реально эффективным кузовам. Не сильно изменилась ситуация и послевоенные годы. Целенаправленные работы по созданию обтекаемых автомобилей почти остановились, а Cx серийных моделей снижался в основном за счет объединения отдельно выступающих фар и крыльев в единую форму кузова. И все же к 60-ому году некоторые автопроизводители обратили внимание на аэродинамику. Так, в 1955-ом вышел Citroen DS, потрясший мир не только множеством неординарных конструктивных решений, но и великолепной обтекаемостью – Cx составлял всего 0,38. Отличился и Porsche со своей моделью 356, второе поколение которой в 1959 году достигло Cx равного 0,39. И это в то время, когда для большинства автомобилей была характерна величина около 0,5. Постепенно стали подтягиваться и остальные автопроизводители – росла мощность моторов, увеличивались скорости, и к 70-ому году вместе с модой на угловатые кузова окончательно утвердилась и роль аэродинамики, как одной из приоритетных областей совершенствования автомобилей.

Оптимизация

Однако задача перед инженерами стояла уже другая: если раньше они трудились над созданием оптимальной аэродинамической формы, то отныне их работа заключалась в оптимизации предложенного дизайнерами проекта. То есть в последовательном изменении отдельных частей кузова, таких, как переходы, выступы, спойлеры, с целью снижения сопротивления воздуха при минимальном вмешательстве в дизайн. И хотя это означало гораздо меньшую свободу действий, тем не менее, на практике такой подход оказался весьма эффективным. В частности, в 70-ых он помог удержать Cx на уровне 0,45, несмотря на переход к более угловатым формам кузова, а в дальнейшем, особенно с появлением мощных суперкомпьютеров, позволил неизменно совершенствовать аэродинамику автомобилей вплоть до наших дней. Но как же при столь ограниченном вмешательстве удалось достичь почти такой же обтекаемости, что и у кузовов, изначально спроектированных с учетом аэродинамики? Оказывается, факторов, принципиально влияющих на обтекаемость, не так уж и много. Их мы сейчас и рассмотрим.

Передний спойлер уменьшает воздушный поток под днищем автомобиля, а вместе с ним и общее аэродинамическое сопротивление. Правда, справедливо это лишь для маленького спойлера – большой уже увеличивает Cx и работает на создание прижимной силы, создавая существенную зону разряжения под передком. К носовой части автомобиля (оформлению бампера, фар и решетки радиатора) требований предъявляется немного, и различные формы могут обеспечивать почти одинаковое сопротивление – все же «разрезать» воздушный поток не составляет больших проблем. Однако в этом месте важно придать воздуху правильно направление, ведь от этого зависит характер обтекания остальной поверхности кузова. В частности, нужно избегать отрыва потока от передней кромки капота – образующая за ней зона разряжения может протянуться аж до лобового стекла и увеличить Cx примерно на 0,05 единиц. Для этого, особенно при сильном наклоне передка, необходимо сглаживать переход к капоту, избегая резких граней. Дополнительно можно отыграть несколько сотых, установив небольшой передний спойлер. Сам по себе он, конечно, увеличивает Cx, частично препятствуя затеканию воздуха под автомобиль, но это компенсируется падением сопротивления днища, где уже гораздо меньший поток сталкивается с полосой препятствий в виде рычагов подвески, картеров агрегатов и выхлопной системой.

16 стр., 7605 слов

Системы и механизмы автомобиля ВАЗ-2170 Lada Priora

... основных узлов агрегатов автомобиля (вид снизу спереди, брызговик двигателя снят): , 3, 13 - опоры силового агрегата; 2 - генератор; 4 - радиатор системы охлаждения двигателя; 5 - электровентилятор системы охлаждения двигателя; 6 - ... которых находятся подпружиненные шарики. Во время работы двигателя шарики открывают отверстия в трубках и струя масла попадает на поршень снизу. В двигателе мод. 21126 ...

Нередко подобного эффекта добиваются и за счет небольшого наклона автомобиля вперед – достаточно даже 2 градусов, чтобы понизить Cx на пару-тройку процентов. А вот наклон лобового стекла, как ни странно, однозначного влияния не оказывает – в пределах стандартых 30-40 градусов четкая связь с величиной Cx не прослеживается. Зато положительную роль играет небольшая выпуклость крыши – снижение Cx может составить две-три сотых. Правда, это верно лишь при условии сохранения высоты кузова – кривизна должна достигаться вследствие увеличения наклона лобового и заднего стекла, ибо в противном случае уменьшение Cx нивелируется увеличением площади поперечного сечения. Главный же элемент, определяющий аэродинамику автомобиля, – задняя часть кузова. Здесь счет идет уже не на сотые, а на десятые доли Cx!

Характер обтекания универсалов и хэтчбеков с большим наклоном пятой двери (коих подавляющее большинство) одинаков – поток отрывается от задней кромки крыши.

Уменьшение угла наклона задней части до 30 градусов приводит к образованию кромочных вихрей, создающих дополнительное разряжение позади автомобиля. При дальнейшем же уменьшении наклона вихри ослабевают, и примерно на 23 градусов достигается плавное и безотрывное течение потока по наклонной поверхности. Наименее эффективной оказывается форма с крутым срезом, то есть кузов типа универсал – поток срывается прямо с кромки крыши, и за машиной образуется обширная зона разряжения, увеличивающая сопротивление движению. Сопутствующей неприятностью является и быстрое загрязнение заднего стекла, ибо в «пустующее» позади пространство активно устремляется поднятая пыль и грязь. И поправить положение никак нельзя, разве что установить дефлектор на крыше, над пятой дверью, отсекающий часть потока вниз – так и стекло будет медленнее пачкаться и разряжение слегка упадет. Подобное решение часто встречается на современных универсалах. Кузова со скошенной задней частью (как правило, хэтчбеки) выглядят, на первый взгляд, предпочтительнее – поток стекает по наклонной поверхности и отрывается внизу пятой двери, оставляя гораздо меньшую область разряжения. Однако справедливо это лишь при малом наклоне задка, не более 23-х градусов.

Среди современных гражданских автомобилей такой формой обладают, пожалуй, только Audi A5 Sportback да Porsche Panamera. Большинство же остальных хэтчбеков и близко не подбираются к этой цифре, а потому по обтекаемости они эквивалентны универсалам и точно так же оснащаются задним стеклоочистителем. Попытки же приблизиться к оптимальному углу чреваты еще большими проблемами. А дело в том, что при уменьшении наклона до 28-32 градусов воздушный поток оказывается в неком переходном состоянии – точка отрыва уже перемещается на нижнюю кромку задка, но плавного обтекания еще наблюдается. При этом на наклонной поверхности возникают так называемые кромочные вихри – потоки с боков кузова начинают попадать на наклонный задок и, закручиваясь по спирали, создают значительное разряжение позади автомобиля. И хотя заднее стекло уже не пачкается, ибо вихри направлены вниз, Cx получается наихудшим. В свое время именно с такой проблемой столкнулся Москвич 2141, который при всей своей визуальной обтекаемости, имел Cx около 0,47. А что же делать инженерам, если им на стол лег такой неудачный дизайнерский проект с наклоном близким к 30 градусам? Если поменять угол никак не нельзя, то можно пойти на крайние меры и установить на торце крыши спойлер — он сорвет поток, предотвратив образование кромочных вихрей, и по обтекаемости такой автомобиль хотя бы приблизится к универсалам. Впрочем, при небольшом наклоне (< 28 градусов) есть и менее радикальный способ – разместить в том же месте спойлер чуть поменьше, который не сорвет поток, а лишь переведет в турбулентное состояние, что поможет ему лучше удерживаться на наклонной поверхности.

25 стр., 12194 слов

Конструкция и расчет легкового автомобиля ВАЗ

... кузова без выступающих элементов, уменьшающая травмирование пешеходов. Экологическая безопасность автомобилей (свойство уменьшать вред, наносимый в процессе эксплуатации пассажирам, водителю и окружающей среде) обеспечивается конструкцией ... и создающие условия длительной безаварийной работы. Пассивную (внутреннюю и внешнюю) безопасность автомобилей (свойство уменьшать тяжесть последствий дорожно ...

Современные седаны и купе, как правило, демонстрируют наилучшие показатели обтекаемости среди остальных типов кузовов. А в некоторых случаях даже удается добиться безотрывного течения потока по заднему стеклу. Описанные проблемы встречаются и на автомобилях со ступенчатым задком, например, седанах и купе, но последствия уже не столь страшны – отовравшийся с крыши поток или закрутившийся на стекле кромочных вихрь «приземляется» на крышку багажника, успокаивается, а затем вновь и уже окончательно отрывается от задней кромки. В результате разряжение за задним стеклом получается небольшим, а вихревой след за автомобилем — почти как у хэтчбека с малым наклоном задка. Кроме того, увеличивая высоту и длину багажника, можно дополнительно понизить Cx на несколько сотых – чем раньше поток коснется поверхности, и чем дольше он будет пребывать в стационарном состоянии, тем лучше. Почти так же эффективно и небольшое сужение задней части.

В общем, возможностей для оптимизации в данном случае предостаточно, а потому на практике именно седаны или купе, особенно больших размеров, и демонстрируют наилучшую обтекаемость.

А дальше? автомобиль аэродинамика сопротивление прижимной

Возможность достижения значений Сх ниже 0,2 для рядовых автомобилей была доказана еще в 1977 году дизайн-студией Pininfarina. Представленный ими макет седана имел Cx 0,18! Читая пресс-релизы и отслеживая презентации новых моделей, трудно усомниться в прогрессе автомобильной аэродинамики – столь восторженно автопроизводители докладывают о своих достижениях. Однако если посмотреть на такие дорогие машины как BMW и Mercedes, то с удивлением можно обнаружить, что за последние 15-20 лет улучшений практически нет. Например, Cx «семерки» BMW образца 1986 года равнялся 0,34, а последней модели – только 0,31. Более того, новый Mercedes E-класса с его Сх равным 0,27, кстати, весьма неплохой величиной по нынешним меркам, оказывается на одном уровне с E-классом 1995-го модельного года! Аналогичная картина и c «пятеркой» BMW. Таким образом, нижняя граница Сх нащупана уже давно, а наблюдаемый прогресс объясняется лишь снижением стоимости исследований, что позволило менее именитым брендам подтянуться к компаниям, изначально не жалевшим денег на проработку аэродинамики. А как же двигаться дальше? Об этом уже давно говорят многие специалисты – необходимо вновь пересматривать роль аэродинамики в процессе создания автомобиля. Нужны новые формы, новые пропорции, главенство инженерной мысли над фантазией дизайнера. И потенциал здесь скрыт немалый – речь не только о выведенной еще в 20-ых годах идеальной форме с Сх 0,16, но и о более поздних исследованиях, подтвердивших, что обтекаемость и рациональная компоновка – понятия не взаимоисключающие.

11 стр., 5256 слов

Испытания автомобилей

... испытаниям. Автомобили текущего производства проходят контрольные, ресурсные, приемо-сдаточные и аттестационные испытания, а также испытания на надежность. Образцы всех автомобилей на ... 1. Измерительные преобразователи испытание кузов автомобиль надежность Измерительный преобразователь - ... сечение S магнитного потока, поворачивая якорь относительно ... применяют для измерения сил, давлений, моментов. Если ...

Прижимная сила

Благодаря несимметричному профилю поток над плоскостью крыла течет быстрее, что, согласно закону Бернулли, создает над крылом зону разрежения а, в конечном итоге, и подъемную силу. Почему крыло самолета создает подъемную силу? Отнюдь не из-за угла между ним и набегающим потоком, как кажется на первый взгляд – угол этот может быть и нулевым (хотя при его увеличении подъемная сила и возрастает).

Секрет крыла кроется в его особом профиле. Оказывается, будучи несимметричным, оно разрезает набегающий воздух таким образом, что верхний поток проходит больший путь, чем нижний. С учетом несжимаемости воздуха (на малых скоростях) это означает, что над крылом скорость потока выше, а статическое давление, соответственно, ниже. Эта разность давлений и создает подъемную силу. При чем же здесь автомобиль? А притом, что характер его обтекания воздухом практически тот же: нижний поток, ныряя под днище, обходит кузов по прямой, а верхний вынужден ускоряться, дабы успеть обогнуть автомобиль сверху. Отсюда все та же разница в давлении и подъемная сила. Правда, во многом она компенсируется динамическим давлением воздуха на капот и лобовое стекло — отталкивая поток вверх, автомобиль, согласно закону сохранения импульса, сам дополнительно прижимается к земле. В итоге подъемная сила получается невелика – как правило, даже на предельной скорости автомобиль разгружается не более чем на 100 кг.

Характер обтекания автомобиля во многом повторяет ситуацию с крылом — все так же воздух сверху ускоряется, а его давление падает. В общем-то, этой величиной можно и пренебречь, но беда в том, что по осям она распределяется неравномерно – если передок автомобиля, как уже было сказано, догружается встречным воздухом, то задняя часть кузова нередко оказывается еще и в области сильного разряжения из-за отрыва потока. В результате с набором скорости постепенно меняется баланс автомобиля: задняя ось разгружается, увеличивая риск заноса. С этой неприятностью в основном и борются производители массовых автомобилей, тем более что до некоторого момента снижение подъемной силы не противоречит уменьшению лобового сопротивления. Например, стремление к безотрывному обтеканию кузова воздухом понижает не только Сx, но и подъемную силу, ведь над автомобилем в таком случае не возникает локальных зон резко пониженного давления. Аналогично две цели преследует и выравнивание поверхности днища – поток воздуха под автомобилем меньше «цепляется» за неровности, его скорость возрастает, а давление, наоборот, падает. То, что нужно!

86 стр., 42635 слов

Тяговый расчет автомобиля ГАЗ

... несколько больше статического и определяется индивидуально для диагональных и радиальных шин. На автомобиле ГАЗ -3307 установлены радиальные шины, поэтому радиус качения колеса рассчитываем по следующей формуле: r ... 19,52 21,92 24,28 26,45 28,14 28,93 2. Тяговый баланс автомобиля Тяговый баланс автомобиля - это совокупность графиков зависимостей силы тяги на ведущих колесах F к , [Н] (на различных ...

Задний спойлер

В отличие от заднего спойлера, «работающего» на улучшение Cx, спойлер, увеличивающий прижимную силу, имеет большие размеры и заметный наклон по отношению к воздушному потоку. С целью снижения подъемной силы, действующей на заднюю ось, часто применяется небольшой спойлер. Размещенный на задней кромке кузова, в месте отрыва потока, он не только уменьшит Cx, ослабив вихри позади автомобиля, но и прижмет автомобиль к дороге, отталкивая вверх набегающий поток воздуха. Правда, здесь уже важно знать меру – слишком большой спойлер негативно скажется на обтекаемости, увеличив и без того обширную зону разряжения за автомобилем. Из-за этого на некоторых машинах он даже делается выдвижным, чтобы вступать в работу лишь при необходимости. Таков инструментарий инженеров при разработке «гражданского» автомобиля. А как же быть со спортивными или тем более гоночными моделями? Чтобы удержать болид в повороте нужен уже гораздо более серьезный арсенал, превращающий подъемную силу в прижимную. Причем подчас такую, что автомобиль смог бы ездить и по потолку!

Передний спойлер

Чтобы добиться заметного эффекта, передний спойлер должен быть очень большим,что неизбежно увеличивает лобовое сопротивление. Одним из подобных радикальных средств является передний спойлер. Идея проста – не пустить воздух под днище, создав тем самым область пониженного давления, присасывающую автомобиль к дороге. Для большего эффекта и равномерного распределения прижимной силы одновременно может применяться и специальный обвес вдоль порогов, «герметизирующий» днище по бокам. Простое и эффективное это решение почти повсеместно применяется на гоночных автомобилях, однако на суперкарах, предназначенных все же для дорог общего пользования, массивный спойлер встретишь нечасто. Причин тому две: первая – снижение геометрической проходимости, ведь спойлер должен едва ли не касаться земли, вторая – увеличение лобового сопротивления. А, разумеется, для большинства покупателей суперкаров важнее круглая цифра максимальной скорости, нежели цепкость в повороте на 200км/ч. К тому же есть и другие решения, почти не портящие обтекаемость. Правда, без серьезного вмешательства в конструкцию автомобиля тут уже не обойтись…

Форма кузова

Помимо низкого центра тяжести такая форма кузова дает и выигрыш в прижимной силе при минимальном лобовом сопротивлении. Речь, прежде всего, об особой форме кузова, примером которой могут послужить суперкары Lamborghini. Минимальная высота, смещенная вперед кабина, сильно наклоненное лобовое стекло и почти горизонтальная задняя часть – автомобиль словно приплюснут сверху. А, как мы помним, чем меньше кривизна верхней части кузова, тем ниже скорость воздушного потока над ней, и тем больше прижимная сила. И все это при низком лобовом сопротивлении, ведь с такими линиями отрыв потока почти исключен, а площадь поперечного сечения минимальна. К сожалению, воспользоваться всеми перечисленными преимуществами дано лишь избранным – среднемоторным суперкарам с очень низкой крышей. В остальных случаях придание задней части автомобиля столь малого наклона приведет к увеличению лобового сопротивления, ибо кромка задка, с которой отрывается поток, окажется слишком высоко. Предельный случай – кузова типа универсал: в сравнении с седанами или хэтчбеками их Cx максимален, хотя, с точки зрения прижимной силы, они по-прежнему впереди всех!

Граунд-эффект

Даже столь быстрые суперкары, как Ferrari Enzo, не ограничивают доступ воздуха под днище спойлером. Наоборот, они «подминают» поток под себя, чтобы ускорить и понизить давление, а затем выпустить его через диффузор позади. Более хитрым способом прижать автомобиль к земле является так называемый граунд-эффект. В его основе лежит все та же обратная зависимость между скоростью потока и давлением: если под днищем автомобиля разогнать воздух, то его статическое давление упадет, а прижимающая сила, соответственно, вырастет. Но как ускорить воздух? Для этого необходимо так спрофилировать днище, чтобы оно вместе с поверхностью дороги представляло собой сужающийся канал – в простейшем случае дно можно сделать не плоским, а немного выгнутым. Кроме того, нужно обеспечить более-менее свободный доступ воздуха под автомобиль, то есть, как минимум, не преграждать ему путь спойлером, а так же правильно организовать его выход позади автомобиля, применив диффузор. Задача последнего – помочь «вытягиванию» воздуха из-под днища, используя область низкого давления, образующуюся за автомобилем, а параллельно и уменьшить саму область разряжения, направив в неё воздух. Собранные же воедино все эти элементы могут дать совершенно поразительный результат, выражающийся в большой прижимной силе при низком лобовом сопротивлении. Например, в болидах Формулы-1, даже несмотря на строгий регламент, ограничивающий форму днища, на долю граунд-эффекта приходится около 40% от общей величины создаваемой прижимающей силы. А откуда берутся оставшиеся 60? Их обеспечивают антикрылья.

Антикрылья

Составное антикрыло помогает сильнее прижать автомобиль к дороге, избежав сильного вихреобразования позади себя – поток проникает в щели между планками, уменьшая образующуюся зону разряжения. Впервые появившиеся в 60-ых годах в Формуле-1 антикрылья стали неотъемлемым атрибутом гоночных автомобилей всех мастей. Конструктивно это те же крылья, о которых шла речь в начале статьи, только перевернутые. Соответственно, область пониженного статического давления образуется не сверху, а снизу, и крыло уже не стремиться взлететь, а тянет вниз. Правда, при установке параллельно воздушному потоку, как того требуют соображения о минимизации лобового сопротивления, заметный эффект достигается лишь на очень большой скорости, в то время как прижимная сила нужна в поворотах, где темп, наоборот, невысок. В связи с этим антикрылья обычно устанавливаются под некоторым углом к потоку (углом атаки), дабы прижимать автомобиль и за счет динамического давления встречного воздуха. Но опять незадача – при этом возрастает лобовое сопротивление! И чем выше нужна прижимная сила, тем больше угол атаки, и тем хуже обтекаемость. С этого момента и начинается инженерное искусство. Например, вместо антикрыла с одним профилем применяются двойные или даже тройные конструкции – так при заданных габаритах удается увеличить общую поверхность антикрыла и получить большую прижимную силу, не прибегая к повышению угла атаки. Если же без наклона пластин все-таки не обойтись, то дополнительно изгибают и сам профиль – теперь, разместив пластины многоярусного антикрыла с небольшим смещением, можно развернуть поток так, чтобы уменьшить разряжение позади них. Отдельное внимание уделяется торцам антикрыльев – в этом месте происходит смешивание попавшего и не попавшего на крыло потоков, а потому велик риск образования вихрей. Во избежание этого устанавливаются специальные торцевые пластины, разделяющие эти потоки. Казалось бы, простой элемент, но взгляните, сколь сложна форма этих пластин на болидах Формулы-1 – описанию она просто не поддается, но именно в этом – вся красота аэродинамики.