Испытание материалов на растяжение и сжатие

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра «Информационные системы и математическое моделирование»

техническая механика

испытание материалов на растяжение и сжатие. диаграммы растяжения пластических и хрупких маиериалов

ЛИСТОВ 13

Преподаватель

____________Никонова Г.А.

«___»_____________2010

Исполнитель

Студент группы ИСТ-1-08

______________Прыгунова Е.В.

«____»__________2010

Волгоград 2010

Испытания материалов на растяжение и сжатие

При проектировании строительных конструкций, машин и механизмов инженеру необходимо знать значения величин, характеризующих прочностные и деформативные свойства материалов. Их можно получить путем механических испытаний, проводимых в эксперименталь­ных лабораториях на соответствующих испытательных машинах. Таких испытаний проводится много и самых различных, например испытания на твердость, сопротив­ляемость ударным и переменным нагрузкам, противодействие высоким температурам и т.д.

Испытания на растяжение

Наибольшую информацию о механических свойствах металлов можно получить из статических испытаний на растяжение. Испытания прово­дятся в соответствии с ГОСТ 1497—84.

Для испытания на растяжение применяют образцы специальной формы — цилиндрические или плоские (рис. 1) .

Рис. 1

l 0

диаграммы растяжения,

В настоящее время начинают широко применяться испытательные машины нового поколения — универсальные машины с использованием современной микроэлектроники, которая позволяет полностью автоматизировать ход испытаний и управлять им, начиная от пуска машины до вывода полученных результатов измерений на дисплей и графопостроитель.

Испытания на сжатие

Для испытания металлов на сжатие применяется цилиндрические образцы с отноше­нием высоты к диаметру в пределах 1,5..,3, Применение более длинных образцов недопустимо, так гак такие об­разцы могут искривляться и тем самым искажать резуль­таты испытаний. Следует обратить внимание на некото­рую условность получаемых результатов из-за наличия сил трения в опорных поверхностях образца. Поэтому стараются ослабить влияние сил трения введением раз­личных смазок или приданием конусной формы торцевым поверхностям образца.

Испытание на сжатие осуществляется обычно при по­мощи тех же испытательных машин с применением спе­циальных приспособлений (реверсоров).

Диаграммы растяжения пластичных и хрупких материалов

Диаграмма низкоуглеродистой стали

Записанная с по­мощью специального устройства на испытательной машине диаграмма растяжения низкоуглеродистой стали изображена на рис. 2. Из этой группы сталей наиболь­шее применение для строительных конструкций находит сталь марки Ст3 и Ст3Гпс.

Рис. 2

В начальной стадии нагружения до некоторой точки А диаграмма растяжения представляет собой наклонную прямую, что указывает на пропорциональность между нагрузкой и деформацией — справедливость закона Гука. Нагрузка, при которой эта пропорциональность еще не нарушается, на диаграмме обозначена через Fпц и ис­пользуется для вычисления предела пропорциональности:

σ пц = Fпц0

Пределом пропорциональности

Зона ОА называется зоной упругости. Здесь возникают только упругие, очень незначительные деформации. Данные, характеризующие эту зону, позволяют определить значение модуля упругости Е.

После достижения предела пропорциональности деформации начинают расти быстрее, чем нагрузка, и диаграмма становится криволинейной. На этом участке в не­посредственной близости от точки А находится точка В, соответствующая пределу упругости.

Пределом упругости

Предел упругости существует независимо от закона прямой пропорциональности. Он характеризует начало перехода от упругой деформации к пластической.

У большинства металлов значения предела пропорциональности и предела упругости незначительно отлича­ются друг от друга. Поэтому обычно считают, что они практически совпадают. Для стали Ст3 σ уп = 205…210 МПа.

При дальнейшем нагружении криволинейная часть диаграммы переходят в почти горизонтальный участок CDплощадку текучести. Здесь деформации растут практически без увеличения нагрузки. Нагрузка Fт , соот­ветствующая точке D, используется при определении фи­зического предела текучести:

σ т = Fт0

Физическим пределом текучести

Зона BD называется зоной общей текучести. В этой зоне значительно развиваются пластические деформации. При этом у образца повышается температура, изменяются электропроводность и магнитные свойства.

Образование пластической деформация в отдельных кристаллах образца происходит уже в начальной (упругой) стадии испытания. Однако эти деформации настоль­ко малы, что не обнаруживаются обычными приборами для измерения малых деформаций. С увеличением на­грузки пластическая деформация начинает накапливаться в микрообъемах образца, а с наступлением текучести эти очаги пластической деформации, сливаясь, захватывают уже макрообъемы образца металла. Необратимо деформированные области образца оказывают повышенное со­противление дальнейшему деформированию (материал упрочняется), и поэтому пластические деформации начи­нают развиваться в зонах, еще не подверженных этим деформациям. В дальнейшем пластическая деформация, переходя от одной зоны к другой, распространяется на весь объем рабочей части образца. Особенно наглядно фронт распространения пластической деформации вдоль образца можно наблюдать при испытании плоских полированных образцов. На поверхности таких образцов в момент возникновения очагов пластической деформа­ции появляются темные наклонные полосы, которые, как правило, с осью образца составляют углы, приблизитель­но равные 45° (линии Людерса — Чернова).

Эти линии представляют собой микроскопические неровности, воз­никающие вследствие необратимых сдвигов, происходя­щих в кристаллах под действием наибольших касатель­ных напряжений.

F max

F max0

Напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца, называется временным сопротивлением.

Для стали марки Ст3 временное сопротивление σ в = 370…470 МПа.

Зона DE называется зоной упрочнения. Здесь удлинение образца происходит равномерно по всей его длине, первоначальная цилиндрическая форма образца сохраня­ется, а поперечные сечения изменяются незначительно и также равномерно.

При максимальном усилии или несколько меньшем его на образце в наиболее слабом месте возникает локальное уменьшение поперечного сечения — шейка (а иногда и две).

Дальнейшая деформация происходят в этой зоне образца. Сечение в середине шейки продолжа­ет быстро уменьшаться, но напряжения в этом сечении все время растут, хотя растягивающее усилие и убывает. Вне области шейки напряжения уменьшаются, и поэтому удлинение остальной части образца не происходит. Наконец, в точке К образец разрушается. Сила, соответст­вующая точи К, называется разрушающей FК , а напря­жения — истинным сопротивлением разрыву (истинным пределом прочности), которые равны

S K =FK /AK

А K

Зона ЕК называется зоной местной текучести. Истинные напряжения в момент разрыва (в шейке) в образце из стали Ст3 достигают 900…1000 МПа.

Заметим, что иногда временное сопротивление называют пределом прочности. Строго говоря, такое допусти­мо только в том случае, когда разрыв образца проис­ходит без образования шейки. Это имеет место с хрупкими материалами, например с чугуном. Тогда наиболь­шая нагрузка практически совпадает с моментом раз­рушения и предел прочности оказывается почти равным истинному напряжению при разрыве. У пластичных материалов, например у стали марки Ст3, наибольшее значение нагрузка не соответ­ствует ее значению при разрушении образца и за характеристику прочности (условную) принимается временное сопротивление.

Интересен механизм разрушения образца из низкоуглеродистой стали. Образец разрушается, как правило, с образованием «чашечки» на одной его части и «кону­са» — на другой. Этот излом называют чашечным или изломом «чашечка — конус».

характеристики пластичности.

Относительное удлинение после разрыва

δ = ((lK -l0 )/l0 )100%

Заметим, что относительное удлинение после разрыва зависит от отношения расчетной длины образца к его диаметру. С увеличением этого отношения значение δ уменьшается, так как зона шейки (зона местной пластической деформации) у длинных образцов занимает от­носительно меньше места, чем в коротких образцах.

относительное сужение после разрыва ψ

ψ=((A 0 -AK )/A0 )100%

Иногда при вычислении значения ψ для цилиндрических образцов пользуются формулой:

ψ=(((d0 )2 -dK )2 )/(d0 )2 )100%

Для стали марки Ст3 характеристики пластичности следующие: δ = 25…27% (при испытании коротких образ­цов); ψ=60…70%.

МО 1 ,

Рис. 3

Δl уп

Δl = Δl уп +

Δl ост = 0

О 1 М

При дальнейшем нагружении (после точки М) кривая продолжается так, как будто не было промежуточной разгрузки. Следовательно, у образца после предварительного деформирования улучшились упругие свойства.

наклепом.

Наклеп наблюдается не у всех материалов и даже не у всех металлов, таких, например, как свинец, олово и др. Оно широко используется в технике (цепи и канаты подъем­ных машин, некоторые виды арматуры железобетонных конструкций, цилиндры гидравлических прессов, турбин­ные диски и другие элементы машин и механизмов).

Условная и истинная диаграммы.

Диаграмма растяже­ния F=f( Δ l) (рис. 2) характеризует свойства образ­ца, так как зависит от его размеров. Для оценки механи­ческих свойств материала диаграмму растяжения пере­страивают в координатах «напряжение—деформация»; все ординаты делят на первоначальную площадь попе­речного сечения А0 , а все абсциссы — на первоначальную длину рабочей части l0 . В результате получаем диаграмму напряжений σ =f( ε) (рис. 4), которая имеет тот же вид, что и диаграмма F=f( Δ l), так как А0 и l0 постоянны.

Рис. 4

условной,

Е: E=tg α = σ/

Диаграмма низколегированной стали.

Диаграмма рас­тяжения низколегированной стали изображена на рис. 5. Аналогичную диаграмму имеют и другие пластич­ные материалы, например красная медь, сплавы алюми­ния.

Рис. 5

В начале диаграммы между нагрузкой и деформацией тоже соблюдается прямо пропорциональная зависимость (закон Гука).

Точка, где эта зависимость нарушается, соответствует пределу пропорциональности. После точки А прямолинейный участок диаграммы плавно переходит в криволинейный — зону пластических деформаций.

условный предел текучести σ 0,2

σ 0,2 =F0.2 /A0

F 0.2

В криволинейной части диаграммы нагрузки увеличиваются вместе с увеличением деформаций, которые про­исходят по всей длине образца. При приближении к мак­симальной нагрузке на образце появляется местное суже­ние — шейка. На диаграмме этому состоянию соответ­ствует точка Е.

После точки Е нагрузка начинает уменьшаться, дефо­рмация образца концентрируется в основном в области шейки. Поперечное сечение шейки уменьшается, и при нагрузке Fk образец разрушается — точка К.

Следует отметить, что участок диаграммы ЕК у низкоуглеродистой стали длиннее, чем у низколегированной. Это указывает на то, что низколегированная сталь об­ладает меньшей пластичностью, поэтому шейка у нее является менее выраженной. Механические же характери­стики прочности выше у низколегированной, чем у низкоуглеродистой стали.

Механизм образования деформации.

кристаллических зерен,

кристаллическую решетку.

Между атомами дей­ствуют либо силы притяжения, либо силы отталкивания. Сила взаимодействия между двумя соседними атомами складывается из этих сил. На рис. 6 показана схема распределения сил отталкивания (кривая 1) и притяжения (кривая 2), а также результирующей силы (кривая 3).

Рис. 6

r 0

Любая попытка не­значительного перемещения атомов из равновесного положения приводит к возникновению сил, стремящихся вернуть их в прежнее состояние.

пластическое деформирование.

дислокации,

Таким образом, пластическая деформация являете результатом необратимых смещений атомов (сдвигов), обусловленных движением дислокаций. Движение дислокаций обычно вызывает макроскопическую пластическую деформацию материала и сопровождается динамическими явлениями: выделением теплоты в результате колебаний атомов около вновь приобретенного положения равновесия и возникновением акустических эффектов.