1. Область применения газлифтного способа добычи нефти
После прекращения фонтанирования из-за нехватки пластовой энергии переходят на механизированный способ эксплуатации скважин, при котором вводят дополнительную энергию извне (с поверхности).
Одним из таких способов, при котором вводят энергию в виде сжатого газа, является газлифт.
Использование газлифтного способа эксплуатации скважин в общем виде определяется его преимуществами.
Возможность отбора больших объемов жидкости практически при всех диаметрах луатационных колонн и форсированного отбора сильнообводненных скважин.
Эксплуатация скважин с большим газовым фактором, т.е.использование энергии пластового газа, в том числе и скважин с забойным давлением ниже давления насыщения.
Малое влияние профиля ствола скважины на эффективность работы газлифта, что особенно важно для наклонно на правленных скважин, т.е. для условий морских месторождений и районов освоения Севера и Сибири.
Отсутствие влияния высоких давлений и температуры продукции скважин, а также наличия в ней мехпримесей (песка) на работу скважин.
Гибкость и сравнительная простота регулирования режима работы скважин по дебиту.
Простота обслуживания и ремонта газлифтных скважин и большой межремонтный период их работы при использовании современного оборудования.
7.Возможность применения одновременной раздельной эксплуатации, эффективной борьбы с коррозией, отложениями солей и парафина, а также простота исследования скважин.
Указанным преимуществам могут быть противопоставлены недостатки.
Большие начальные капитальные вложения в строительство компрессорных станций.
Сравнительно низкий коэффициент полезного действия (КПД) газлифтной системы.
Возможность образования стойких эмульсий в процессе подъема продукции скважин.
Исходя из указанного выше, газлифтный (компрессорный) способ ксплуатации скважин, в первую очередь, выгодно использовать на крупных месторождениях при наличии скважин с большими дебитами и высокими забойными давлениями после периода фонтанирования.
Далее он может быть применен в наклонно направленных скважинах и скважинах с большим содержанием мехпримесей в продукции, т.е. в условиях, когда за основу рациональной эксплуатации принимается межремонтный период (МРП) работы скважин.
При наличии вблизи газовых месторождений (или скважин) с достаточными запасами и необходимым давлением используют бескомпрессорный газлифт для добычи нефти.
Курсовая работа эксплуатация и обслуживание станков с чпу
... на станках с ЧПУ сложных деталей, в том числе из труднообрабатываемых материалов, повышенной точности, требующих выполнения многих технологических операций. Качество работы, выполненной продукции зависит от правильной эксплуатации и ... ремонтных работ. Чем меньше удельный вес расходов на ремонт, обслуживание и содержание оборудования в себестоимости продукции, тем выше эффективность произ-водства и ...
Эта система может быть временной мерой — до окончания строительства компрессорной станции. В данном случае система газлифта остается практически одинаковой с компрессорным газлифтом и отличается только иным источником газа высокого давления.
Газлифтная эксплуатация может быть непрерывной или периодической. Периодический газлифт применяется на скважинах с дебитами до 40—60 т/сут или с низкими пластовыми давлениями.
Технико-экономический анализ, проведенный при выборе способа эксплуатации, может определить приоритет использования газлифта в различных регионах страны с учетом местных условий. Так, большой МРП работы газлифтных скважин, сравнительная простота ремонта и возможность автоматизации предопределили создание больших газлифтных комплексов на Самотлорском, Федоровском, Правдинском месторождениях в Западной Сибири. Это дало возможность снизить необходимые трудовые ресурсы региона и создать необходимые инфраструктуры (жилье и т.д.) для рационального их использования.
2. Газлифтный способ добычи нефти
При газлифтном способе эксплуатации недостающая энергия подается с поверхности в виде энергии сжатого газа по специальному каналу.
Газлифт подразделяется на два типа: компрессорный и бескомпрессорный. При компрессорном газлифте для сжатия попутного газа применяются компрессоры, а при бескомпрессорном газлифте используется газ газового месторождения, находящийся под давлением, или из других источников.
Газлифт относительно других механизированных способов эксплуатации скважин имеет ряд преимуществ:
- возможность отбора значительных объемов жидкости с больших глубин на всех этапах разработки месторождения при высоких технико-экономических показателях;
- простота скважинного оборудования и удобство его обслуживания;
- эффективная эксплуатация скважин с большими искривлениями ствола;
- эксплуатация скважин в высокотемпературных пластах и с большим газовым фактором без осложнений;
- возможность осуществления всего комплекса исследовательских работ по контролю за работой скважины и разработкой месторождения;
- полная автоматизация и телемеханизация процессов добычи нефти;
- большие межремонтные периоды работы скважин на фоне высокой надежности оборудования и всей системы в целом;
- возможность одновременно-раздельной эксплуатации двух пластов и более при надежном контроле за процессом;
- простота борьбы с отложением парафина, солей и коррозионными процессами;
- простота работ по подземному текущему ремонту скважины, восстановлению работоспособности подземного оборудования для подъема продукции скважины.
Недостатками газлифта по традиции считаются высокие начальные капитальные вложения, фондоемкость и металлоемкость. Эти показатели, во многом зависящие от принятой схемы обустройства промысла, ненамного превышают показатели при насосной добыче.
Наибольшее число элементов в системе газлифта и более сложное оборудование используются в случае компрессорного газлифта. Современный газлифтный комплекс представляет собой замкнутую герметичную систему высокого давления (рис. 1).
Основными элементами этой схемы являются: скважины 1, компрессорные станции 3, газопроводы высокого давления, трубопроводы для сбора нефти и газа, сепараторы различного назначения 7, газораспределительная батарея 4, групповые замерные установки, системы очистки и осушки газа с регенерацией этиленгликоля 6, дожимные насосные станции, нефтесборный пункт,
Эксплуатация газлифтных скважин
... При компрессорном газлифте для сжатия попутного газа применяются компрессоры, а при бескомпрессорном газлифте используется газ газового месторождения, находящийся под давлением, или из других источников. Газлифт относительно других механизированных способов эксплуатации скважин имеет ...
Рис. 1. Схема замкнутого цикла газлифтного комплекса
В состав комплекса входит система АСУ ТП, которая включает выполнение следующих задач:
- измерение и контроль рабочего давления на линиях подачи газа в скважины на магистральных коллекторах;
- измерение и контроль перепада давления;
- управление, оптимизация и стабилизация режима работы скважин;
- расчет рабочего газа;
- измерение суточного дебита скважины по нефти, воде и общему объему жидкости.
В результате решения задачи оптимального распределения компримируемого газа для каждой скважины назначают определенный режим закачки газа, который необходимо поддерживать до следующего изменения режима. Параметром для стабилизации принимается перепад давления на измерительной шайбе дифманометра, установленного на рабочей линии подачи газа в скважину.
Выбор типа газлифтной установки и оборудования, обеспечивающего наиболее активную эксплуатацию скважин, зависит от горно-геологических и технологических условий разработки эксплуатационных объектов, конструкции скважин и заданного режима их эксплуатации.
Строгой классификации газлифтных установок не существует, и они группируются на основе самых общих конструктивных и технологических особенностей.
В зависимости от количества рядов труб, спущенных в скважину, их взаимного расположения и направления движения рабочего агента и газожидкостной смеси имеются системы различных типов
однорядный подъемник кольцевой и центральной систем
двухрядный подъемник кольцевой и центральной систем
полуторарядный лифт обычно кольцевой системы
Перечисленные системы газлифтных подъемников имеют преимущества и недостатки. В связи с этим обоснование целесообразности их применения производится с учетом горно-геологических и технологических особенностей конкретного объекта разработки.
По степени связи трубного и кольцевого пространства с забоем скважины установки газлифта делятся на открытые, полузакрытые и закрытые.
Опыт разработки нефтяных месторождений Западной Сибири показал, что наиболее рациональна система, при которой сжатый газ отбирается из скважин, оборудованных для добычи газа и осуществления внутрискважи Внутрискважинный газлифт — наиболее эффективный способ подъема жидкости. Осуществляется он путем перепуска газа из вышележащего (возможно, и из нижележащего) газового пласта через специальный забойный регулятор.
Применение внутрискважинного газлифта позволяет исключить строительство наземных газопроводов для сбора и распределения газа и газораспределительных пунктов, установок по подготовке газа (осушка, удаление части жидких углеводородов, очистка от сероводорода).
В связи с вводом в подъемник ближе к башмаку НКТ газа высокого давления обеспечивается высокая термодинамическая эффективность потока в подъемнике. Если при бескомпрессорном и компрессорном газлифтах при лучших режимах термодинамическая эффективность составляет 30—40 %, то при внутрискважинном бескомпрессорном газлифте значение ее достигает 85-90 %
3. Техника безопасности при эксплуатации газлифтных скважин
газлифтный добыча нефть
Оборудование для эксплуатации скважин фонтанным и газлифтным способами
... должна обеспечивать проход жидкости или газа в межтрубные пространства, а также контроль давления в них и выполнения необходимых исследований скважины. Колонны подъемных труб подвешивают ... длительного фонтанирования скважины, что связано с рациональным использованием энергии пласта путем обеспечения высокого к. п. д. работы фонтанного подъемника. Оборудование фонтанной скважины обычно состоит ...
Устье газлифтной скважины оборудуют стандартной фонтанной арматурой на рабочее давление, равное максимальному, ожидаемому на устье скважины. Арматуру до установки на скважину опрессовывают в собранном виде на паспортное пробное давление. После установки на устье скважины ее опрессовывают на давление для опрессовки эксплуатационной колонны; при этом, независимо от ожидаемого рабочего давления, арматуру монтируют с полным комплектом шпилек и уплотнений. Ее выкидные и нагнетательные линии, расположенные на высоте, должны иметь надежные опоры, предотвращающие падение труб при ремонте, а также их вибрацию при работе скважин.
Обвязка скважины, аппаратуры и газопроводов под давлением в зимнее время должна отогреваться только паром или горячей водой.
В газораспределительных будках следует не допускать скопления газа, который при определенном соотношении с воздухом образует взрывоопасную смесь. Газ обычно скапливается вследствие пропуска его через фланцевые соединения или сальники вентилей. Во избежание поступления газа из скважины по трубопроводу в БГРА должен быть установлен обратный клапан.
Скопление взрывоопасной смеси особенно недопустимо в зимнее время, когда окна и двери газораспределительных будок закрыты. В зимнее время также могут образовываться гидратные пробки вследствие замерзания конденсата в батареях и газопроводах. Это приводит к повышению давления в трубопроводах и возможному их разрыву. Попадание газа в воздух может быть причиной взрыва. Основная мера, предотвращающая взрыв, — вентиляция помещения. Для устранения утечки газа на линии следует постоянно следить за исправностью сальниковых набивок вентилей, сосудов для конденсата (на газопроводных магистральных линиях в низких точках).
В зимнее время следует утеплить помещения для предотвращения от замерзания конденсата в батареях.
Для устранения источников воспламенения газа в будках необходимо:
- использовать электрическое освещение будок, установленное вне будок;
- выносить за будку электроприборы (рубильники, печи);
- применять инструмент, не дающий искр, при ремонте внутри будок;
- запретить применение открытого огня и курение в будке;
- сооружать будку из огнестойкого материала.
4. Обслуживание газлифтных скважин
Обслуживание газлифтных скважин включает исследование газлифтных скважин, анализ их работы и устранение неисправностей газлифтнои установки.
Целью исследования является определение параметров пластов, пластовых жидкостей и призабойной зоны для оценки рационального расхода рабочего агента (газа) по критерию максимума добычи нефти или минимума удельного расхода газа.
Основной метод исследования газлифтных скважин — метод пробных откачек. Забойное давление при этом определяется глубинным манометром или расчетом по давлению нагнетаемого газа.
Осложняющие условия эксплуатации газлифтных скважин требуют проведения необходимых оргтехмероприятий.
Для борьбы с пескопроявлением используют:
- фильтры для закрепления призабойной зоны;
- ограничение депрессии для предотвращения разрушения скелета нефтесодержащих пород;
- конструкции подъемных лифтов и режимы их работы, при которых обеспечивается полный вынос песка.
Для борьбы с парафином, гидратами, солеотложением, образованием эмульсии, несмотря на повышенную металлоемкость установки, иногда используют второй ряд НКТ, что позволяет закачивать в кольцевое пространство между ними растворители и химреагенты без остановки скважины.
Учебное пособие: Ремонт и обслуживание скважин и оборудования для бурения
... с прихватами инструмента Цементирование колонны Методы увеличения производительности скважин Соляно - кислотные обработки скважин Гидравлический разрыв пласта Виброобработка призабойной зоны скважины Тепловая обработка призабойной зоны скважины Обработка призабойной зоны скважин поверхностно-активными веществами Воздействие давлением пороховых газов ...
Образование ледяных и гидратных пробок в скважинах и негерметичностях лифта устраняют следующими методами:
- устранением негерметичности лифта и уменьшением перепада давления на клапане;
- вводом ингибитора в нагнетаемый газ;
- подогревом газа; снижением давления при прекращении подачи газа на скважину.
5. Методы воздействия на призабойную зону пласта
Дополнительный приток нефти в скважины, а следовательно, и дополнительный дебит обеспечивают применение методов увеличения проницаемости призабойной зоны пласта. На окончательной стадии бурения скважины глинистый раствор может проникать в поры и капилляры призабойной зоны пласта, снижая ее проницаемость. Снижение проницаемости этой зоны, загрязнение ее возможно и в процессе эксплуатации скважины. Проницаемость призабойной зоны продуктивного пласта увеличивают за счет применения различных методов:
- химических (кислотные обработки),
- механических (гидравлический разрыв пласта и с помощью импульсно-ударного воздействия и взрывов),
- тепловых (паротепловая обработка, электропрогрев) и их комбинированием.
Кислотная обработка скважин связана с подачей на забой скважины под определенным давлением растворов кислот. Растворы кислот под давлением проникают в имеющиеся в пласте мелкие поры и трещины и расширяют их. Одновременно с этим образуются новые каналы, по которым нефть может проникать к забою скважины. Для кислотной обработки применяют в основном водные растворы соляной и плавиковой (фтористоводородной) кислоты. Концентрация кислоты в растворе обычно принимается равной 10ё15 %, что связано с опасностью коррозионного разрушения труб и оборудования. Однако в связи с широким использованием высокоэффективных ингибиторов коррозии и снижением опасности коррозии концентрацию кислоты в растворе увеличивают до 25ё28 %, что позволяет повысить эффективность кислотной обработки. Длительность кислотной обработки скважин зависит от многих факторов — температуры на забое скважины, генезиса пород продуктивного пласта, их химического состава, концентрации раствора, давления закачки. Технологический процесс кислотной обработки скважин включает операции заполнения скважины кислотным раствором, продавливание кислотного раствора в пласт при герметизации устья скважин закрытием задвижки. После окончания процесса продавливания скважину оставляют на некоторое время под давлением для реагирования кислоты с породами продуктивного пласта. Длительность кислотной обработки после продавливания составляет 12ё16 ч на месторождениях с температурой на забое не более 40°С и 2ё3 ч при забойных температурах 100ё150°С.
Гидравлический разрыв пласта (ГРП) заключается в образовании и расширении в пласте трещин при создании высоких давлений на забое жидкостью, закачиваемой в скважину. В образовавшиеся трещины нагнетают песок, чтобы после снятия давления трещина не сомкнулась. Трещины, образовавшиеся в пласте, являются проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин может достигать нескольких десятков метров, ширина их 1ч4 мм. После гидроразрыва пласта производительность скважины часто увеличивается в несколько раз.
Анализ строения залежи нефти пласта П Лозового месторождения ...
... Курсовая работа по анализу строения месторождения позволит уточнить исходные составляющие геологической модели и определить направления доразведки месторождения. 1.1 Геолого-промысловая характеристика продуктивных пласта П Пласт ... году по результатам бурения 43 поисково-разведочных скважин Тюменским геологическим управлением был проведен подсчет запасов нефти и растворенного газа. Запасы нефти ...
Операция ГРП состоит из следующих этапов: закачки жидкости разрыва для образования трещин; закачки жидкости — песконосителя; закачки жидкости для продавливания песка в трещины.
Гидропескоструйная перфорация скважин — применяется для создания каналов, соединяющих ствол скважины с пластом при кислотной обработке скважины и других методах воздействия. Метод основан на использовании кинетической энергии и абразивных свойств струи жидкости с песком, истекающей с большой скоростью из насадок перфоратора и направленной на стенку скважины. За короткое время струя жидкости с песком образует отверстие или прорезь в обсадной колонне и канал или щель в цементном камне и породе пласта. Жидкость с песком направляется к насадкам перфоратора по колонне насосно-компрессорных труб с помощью насосов, установленных у скважины.
Виброобработка забоев скважин заключается в том, что на забое скважины с помощью вибратора формируются волновые возмущения среды в виде частых гидравлических импульсов или резких колебаний давления различной частоты и амплитуды. При этом повышается проводимость пластовых систем вследствие образования новых и расширения старых трещин и очистки призабойной зоны.
Торпедирование скважин состоит в том, что заряженную взрывчатым веществом (ВВ) торпеду спускают в скважину и взрывают против продуктивного пласта. При взрыве образуется каверна, в результате чего увеличиваются диаметр скважины и сеть трещин.
Тепловое воздействие на призабойную зону используют в том случае, если добываемая нефть содержит смолу или парафин. Существует несколько видов теплового воздействия: электротепловая обработка; закачка в скважину горячих жидкостей; паротепловая обработка. Термокислотную обработку скважин применяют на месторождениях нефтей с большим содержанием парафина. В этом случае перед кислотной обработкой скважину промывают горячей нефтью или призабойную зону пласта прогревают каким-либо нагревателем для расплавления осадков парафинистых отложений. Сразу после этого проводят кислотную обработку.
Тепловая обработка призабойной зоны снижает вязкость нефти и усиливает ее приток в скважину. Он прогревает пласт до температуры 80 С на расстояние 0 5 м от забоя.
Тепловые обработки призабойной зоны пласта производит специально подготовленная бригада. При закачивании пара предусматривается возможность управления запорными устройствами с безопасного расстояния. На паропроводе устанавливают обратный клапан. Для проведения глубинных замеров манометром, термометром применяют лубрикатор, имеющий боковой вентиль для стравливания давления. Оборудование устья тщательно закрепляют. В сальниковых устройствах применяют термостойкий материал. Для смазки резьбовых соединений используют термостойкую герметизирующую смазку. Устье скважины оборудуют устройством, компенсирующим удлинение колонны НКТ от температуры. Если для закачивания пара применяют НКТ без пакера, то компенсатор устанавливают и в скважине. При закачивании пара через НКТ с пакером, для предупреждения разрыва эксплуатационной колонны и обвязки устья, задвижку на отводе от затрубного пространства открывают.
Промысловые нефтяные трубопроводы
... продвижения нефти будут магистральные нефтепроводы, которые и доставляют продукт до нефтебаз. С этих нефтебаз осуществляется транспортировка нефтепродуктов уже непосредственно для конечного использования. 2. Виды труб нефтяной трубопровод коррозионный промысловый Магистральные нефтепроводы ...
Тепловая обработка призабойной зоны нефтяных скважин является эффективным способом восстановления проницаемости призабойной зоны. Она устраняет накапливающиеся в процессе эксплуатации активные парафиново-смоли-сто-асфальтеновые отложения, затрудняющие приток нефти из пласта к забою скважины.
Для тепловой обработки призабойных зон имеются установки СУЭПС-12ОО. Закончено промышленное испытание более мощной установки УЭС-15ОО-25-А. Организовано промышленное производство аккумуляторов давления скважин АДС различных конструкций для теплогазохимического воздействия на призабойную зону.
Способ тепловой обработки призабойной зоны нефтенасыщенного пласта, включающий закачку в пласт перекиси водорода, отличающийся тем, что с целью ускорения разогрева, увеличения объемного охвата тепловой обработкой призабойной зоны и термокаталитической активации реакцией окисления нефти после закачки перекиси водорода последовательно вводят хромовую кислоту и водовоздушную смесь.
Способ тепловой обработки призабойной зоны нефтенасыщенного пласта, включающий закачку в пласт перекиси водорода, отличающийся тем, что с целью ускорения разогрева, увеличения объемного охвата тепловой обработкой призабойной зоны и термокаталитической активации реакцией окисления нефти после закачки перекиси водорода последовательно вводят хромовую кислоту и водовоздушную смесь.
При тепловой обработке призабойной зоны в скважину нагнетают перегретый водяной пар, получаемый от ППУ. Затем скважину закрывают на период, необходимый для передачи тепла в глубь пласта. Указанную операцию проводят под давлением. Если обсадная колонна не рассчитана на такое давление, то в скважину спускают термостойкий пакер, который представляет собой устройство для перекрытия ствола скважины на заданной глубине. Принцип действия различных видов пакеров одинаков. После спуска пакера до определенной отметки с помощью механических усилий его расклинивают. Он плотно закупоривает колонну, разобщая ее верхнюю и нижнюю части. При установке пакера задвижка на стволе от затрубного пространства должна быть открыта. Площадку по направлению отвода необходимо освободить от лкэдей и оборудования.
6. Оборудование магистральных нефте- и газопроводов
Можно, используя последние достижения науки и техники, добыть очень дешевое сырье. Но не забывайте: большинство нефтепромыслов в настоящее время находится далеко от нефтеперерабатывающих предприятий.
Можно, конечно, использовать традиционные виды транспорта. На море грузить добываемую нефть в танкеры, на суше в железнодорожные цистерны. Но выгодно ли это?
Даже на море, где современные супертанкеры забирают в трюмы сразу сотни тысяч тонн топлива, такое решение транспортной проблемы нельзя назвать наилучшим. Ведь подобная транспортировка не так уж дешева. Вдобавок, частые аварии танкеров приводят к загрязнению окружающей среды, уничтожают все живое на сотни миль вокруг, да и регулярность такого сообщения могла бы быть лучшей: как известно, и по сию пору скорость движения морского транспорта во многом зависит от погоды.
Магистральные трубопроводы Анализ территориально-регионального ...
... МПа (свыше 12 до 25 кгс/см2) включ. Магистральные нефтепроводы и нефтепродуктопроводы в зависимости от диаметра трубопровода подразделяются на четыре класса, мм: I - ... сельскохозяйственных и других работ регламентируются Правилами охраны магистральных трубопроводов. Температура газа, нефти (нефтепродуктов), поступающих в трубопровод, должна устанавливаться исходя из возможности транспортирования ...
Еще хуже дела обстоят на суше. Для перевозки топлива нам понадобилось бы с каждым годом строить все новые и новые железные дороги, по которым сновали бы бесчисленные составы цистерн. А уж с газом еще хуже: вместо цистерн пришлось бы заводить целый парк специальных «термосов», в которых бы постоянно поддерживалась температура минус 80 градусов Цельсия и ниже при давлении 5—6 МПа — только так можно перевозить газ в жидком состоянии.
Собственно так и поступают, например, при транспортировке метана из Алжира в США. Создан целый флот танкеров-метановозов. У них на борту работают специальные компрессорные и холодильные установки, поддерживающие нужный режим в танкерах, с тем, чтобы метан был в нужном (жидком) агрегатном состоянии. Во время рейса часть перевозимого метана расходуется на работу холодильных установок.
Число таких плавучих «термосов» исчисляется десятками. В то же время трудно представить себе такую транспортную технологию в сухопутном исполнении.
По счастью, мы можем обо всем этом говорить в сослагательном наклонении. Специалисты нашли другое решение транспортной проблемы. По всей стране и за ее рубежи проложена мощная и разветвленная сеть трубопроводов, и развитие этой сети продолжается.
Трубопроводы в нашей стране по темпам роста грузооборота намного опередили другие виды транспорта. Доля их в общем объеме перевозок быстро росла и достигла почти трети общего грузооборота страны. Столь стремительные темпы объясняются исключительно высокой экономичностью трубопроводов. Достаточно сказать, что на доставку каждой тонны нефти по трубам требуется в 10 с лишним раз меньше трудовых затрат, чем для ее перевозки по железным дорогам. Этот прогрессивный вид транспорта экономит ежегодно труд примерно 750 тысяч человек!
В настоящее время трубопроводный транспорт становится средоточием новейших достижений отечественной науки и техники. Казалось бы, что тут хитрого: труба она и есть труба… Но само по себе изготовить трубу, да еще большого диаметра — достаточно сложная инженерно-техническая задача. Тем не менее, в короткий срок производство таких труб было налажено на предприятиях нашей страны.
Другая проблема при строительстве нефтегазопровода — все трубы необходимо герметично сваривать в единую нитку, и притом довольно длинную: тот же газопровод Уренгой — Помарьи — Ужгород имеет протяженность около 4500 километров!
А общая протяженность сварных швов, как показывают расчеты, в 1,5 раза превышает длину самого трубопровода.
Систематическое сооружение нефтепроводов в районах добычи нефти — в Урало-Поволжье и Закавказье было начато в середине 60-х годов, прошлого века. В этот период, в частности, были построены трансконтинентальные нефтепроводы Туймазы—Омск (впервые применены трубы диаметром 530 мм), Туймазы — Омск — Новосибирск — Иркутск диаметром 720 мм и длиной 3662 км, нефтепроводы Альметьевск — Горький (первая нитка) Альметьевск — Пермь, Ишимбай — Орск, Горький — Рязань, Тихорецк — Туапсе, Рязань — Москва и др. Необходимо особо отметить, что в 1955 г. был введен в эксплуатацию первый «горячий» нефтепровод Озек-Суат — Грозный диаметром 325 мм и протяженностью 144 км; по нему впервые в нашей стране стали транспортировать нефть после предварительного подогрева в специальных печах.
Магистральные нефтепроводы
... 2.05.07 - 85 устанавливает для магистральных нефтепроводов категории, которые требуют обеспечения соответствующих прочностных характеристик на любом участке трубопровода: Диаметр нефтепровода, мм до 700 700 и более Категория нефтепровода при прокладке подземной IV ...
В 1964 г. был введен в эксплуатацию крупнейший в мире по протяженности (5500 км вместе с ответвлениями) трансевропейский нефтепровод «Дружба», соединяющий месторождения нефти в Татарии и Куйбышевской области с восточно-европейскими странами (Чехия, Словакия, Венгрия, Польша, Германия).
Открытие крупнейших месторождений нефти в Западной Сибири в корне изменило приоритеты трубопроводного строительства. Транспортировка нефти из данного региона до существовавших промышленных центров была крайне затруднена. Расстояние от месторождений до ближайшей железнодорожной станции составляло более 700 км. Единственная транспортная магистраль — река Обь и впадающая в нее река Иртыш — судоходны не более 6 мес. в году. Обеспечить транспортировку все возрастающих объемов нефти мог только трубопроводный транспорт.
В декабре 1965 г. было завершено строительство и введен в эксплуатацию первый в Сибири нефтепровод Шаим — Тюмень диаметром 529— 720 мм и протяженностью 410 км. В ноябре 1965 г. начато и в октябре 1967 г. завершено строительство нефтепровода Усть-Балык — Омск диаметром 1020 мм и протяженностью 964 км (в США трубопроводов такого диаметра еще не было) Осенью 1967 г. начато и в апреле 1969 г. завершено строительство нефтепровода Нижневартовск — Усть-Балык диаметром 720 мм и протяженностью 252 км. В последующие годы на базе Западно-Сибирских месторождений были построены трансконтинентальные нефтепроводы Усть-Балык — Курган — Уфа — Альметьевск (1973 г.), Александровское — Анжеро-Судженск — Красноярск — Иркутск (1973 г.), Нижневартовск — Курган — Куйбышев (1976 г.), Сургут — Горький — Полоцк (1979 г.) и др.
Продолжалось строительство нефтепроводов и в других регионах. В 1961 г. на месторождениях Узень и Жетыбай (Южный Мангышлак) были получены первые фонтаны нефти, а уже в апреле 1966 г. вступил в строй нефтепровод Узень — Шевченко длиной 141,6 км. В дальнейшем он был продлен сначала до Гурьева (1969 г.), а затем до Куйбышева (1971 г.).
Ввод в эксплуатацию нефтепровода Узень — Гурьев — Куйбышев диаметром 1020 мм и протяженностью 1750 км позволил решить проблему транспорта высоковязкой и высокозастывающей нефти Мангышлака. Для этого была выбрана технология перекачки с предварительным подогревом в специальных печах. Нефтепровод Узень — Гурьев — Куйбышев стал крупнейшим «горячим» трубопроводом мира.
Были продлены нефтепроводы Альметьевск — Горький и Туймазы — Омск — Новосибирск на участках соответственно Горький — Ярославль — Кириши и Новосибирск — Красноярск — Иркутск.
На других направлениях в 1971 — 1975 гг. были построены нефтепроводы Уса — Ухта — Ярославль — Москва, Куйбышев — Тихорецкая — Новороссийск и другие. В 1976— 1980 гг. — нефтепроводы Куйбышев — Лисичанск — Одесса, Холмогоры — Сургут, Омск — Павлодар, Каламкас — Шевченко, Самгори — Батуми и другие, в 1981— 1985 гг. — нефтепроводы Холмогоры — Пермь — Альметьевск — Клин, Возей — Уса — Ухта, Кенкияк — Орск, Павлодар — Чимкент — Чардар — Фергана, Прорва — Гурьев, Красноленинский — Шаим, Тюмень — Юргамыш, Грозный — Баку.
В настоящее время все магистральные нефтепроводы России эксплуатируются ОАО «АК Транснефть», которое является транспортной компанией и объединяет 11 российских предприятий трубопроводного транспорта нефти, владеющих нефтяными магистралями, эксплуатирующих и обслуживающих их. При движении от грузоотправителя до грузополучателя нефть проходит в среднем 3 тыс. км. ОАО «АК Транснефть» разрабатывает наиболее экономичные маршруты движения нефти, тарифы на перекачку и перевалку нефти с утверждением их в Федеральной энергетической комиссии (ФЭК).
Взаимоотношения ОАО АК «Транснефть» с грузоотправителями регулируются «Положением о приеме и движении нефти в системе магистральных нефтепроводов», утвержденным Минэнерго РФ в конце 1994 г. Этот документ включает методику определения оптимальных объемов поставки нефти и газового конденсата на нефтеперерабатывающих заводах (НПЗ) России, квот нефтеперерабатывающих предприятий для поставки на экспорт, порядок составления ежеквартальных графиков транспортировки нефти для каждого из производителей (с разбивкой по месяцам).
Документ провозглашает равнодоступность всех грузоотправителей к системе трубопроводного транспорта.
По состоянию на 2002 г. ОАО АК «Транснефть» эксплуатировала 48,6 тыс. км магистральных нефтепроводов диаметром от 400 до 1220 мм, 322 нефтеперекачивающие станции, резервуары общим объемом по строительному номиналу 13,5 млн м3. 32% нефтепроводов имели срок эксплуатации до 20 лет, 34% — от 20 до 30 лет и свыше 30 лет эксплуатируется 34% нефтепроводов. Компания выполняет собственными силами и средствами практически весь комплекс профилактических и ремонтно-восстановительных работ на всех объектах магистральных нефтепроводов. В состав нефтепроводных предприятий входят 190 аварийно-восстановительных пунктов, 71 ремонтно-строительная колонна для выполнения капитального ремонта линейной части, 9 центральных (региональных) без производственного обслуживания и ремонта и 38 баз производственного обслуживания. В мае 1991 г. в компании создан Центр технической диагностики, ОАО ЦТД «Диаскан», который обеспечивает проведение диагностики магистральных нефтепроводов.
К настоящему времени нефть различных месторождений поступает на отечественные нефтеперерабатывающие заводы и экспорт по системе нефтепроводов ОАО «Транснефть».
Нефтепроводом принято называть трубопровод, предназначенный для перекачки нефти и нефтепродуктов (при перекачке нефтепродукта иногда употребляют термин нефтепродуктопровод).
В зависимости от вида перекачиваемого нефтепродукта трубопровод называют также бензино-, керосин-, мазутопроводом и т.д.
По своему назначению нефте- и нефтепродуктопроводы можно разделить на следующие группы:
1. промысловые — соединяющие скважины с различными объектами и установками подготовки нефти на промыслах;
2. магистральные (МН) — предназначенные для транспортировки товарной нефти и нефтепродуктов (в том числе стабильного конденсата и бензина) из районов их добычи (от промыслов) производства или хранения до мест потребления (нефтебаз, перевалочных баз, пунктов налива в цистерны, нефтеналивных терминалов, отдельных промышленных предприятий и НПЗ).
Они характеризуются высокой пропускной способностью, диаметром трубопровода от 219 до 1400 мм и избыточным давлением от 1,2 до 10 МПа;
3. технологические — предназначенные для транспортировки в пределах промышленного предприятия или группы этих предприятий различных веществ (сырья, полуфабрикатов, реагентов, а также промежуточных или конечных продуктов, полученных или используемых в технологическом процессе и др.), необходимых для ведения технологического процесса или эксплуатации оборудования.
Согласно СНиП 2.05.06 — 85 магистральные нефте- и нефтепродуктопроводы подразделяются на четыре класса в зависимости от условного диаметра труб (в мм): 1 — 1000—1200 включительно: II — 500—1000 включительно; III — 300—500 включительно; IУ — 300 и менее
Наряду с этой классификацией СНиП 2.05.07 — 85 устанавливает для магистральных нефтепроводов категории, которые требуют обеспечения соответствующих прочностных характеристик на любом участке трубопровода:
Диаметр нефтепровода, мм до 700 700 и более
Категория нефтепровода при прокладке
подземной IV III
наземной и подземной III III
Приведенная классификация и категории трубопроводов определяют в основном требования, связанные с обеспечением прочности или неразрушимости труб. В северной природно-климатической зоне все трубопроводы относятся к категории III. Исходя из этих же требований в СНиП 2.05.06 — 85 определены также и категории, к которым следует относить не только трубопровод в целом, но и отдельные его участки. Необходимость в такой классификации объясняется различием условий, в которых будет находиться трубопровод на тех или иных участках местности, и возможными последствиями в случае разрушения трубопровода на них. Отдельные участки нефтепроводов могут относиться к высшей категории В, категории I или II. К высшей категории В относятся трубопроводные переходы через судо- и несудоходные реки при диаметре трубопровода 1000 мм и более. К участкам категории I относятся под- и надводные переходы через реки, болота типов II и III, горные участки, вечномерзлые грунты.
К участкам категории II относятся под- и надводные переходы через реки, болота типа и, косогорные участки, переходы под дорогами и т.д.
Прокладку трубопроводов можно осуществлять одиночно и параллельно действующим или проектируемым магистральным трубопроводам в техническом коридоре. Под техническим коридором магистральных трубопроводов согласно СНиП 27.05.06—85 понимают систему параллельно проложенных трубопроводов по одной трассе. В отдельных случаях допускается прокладка нефте- и газопроводов в одном коридоре.
Технологические трубопроводы в зависимости от физико-химических свойств и рабочих параметров (давления Р и температуры Т) подразделяются на три группы (А, Б, В) и пять категорий. Группу и категорию технологического трубопровода устанавливают по параметру, который требует отнесения его к более ответственной группе или категории. Класс опасности вредных веществ следует определять по ГОСТ 12.1.005—76 и ГОСТ 12.01.007—76, взрывопожароопасность — по ГОСТ 12.1.004—76. Нефти имеют класс опасности II, масла минеральные нефтяные — III, бензины — IV.
Для технологических трубопроводов нефтеперекачиваюших станций важное значение имеет правильный выбор параметров транспортируемого вещества. Рабочее давление принимается равным избыточному максимальному давлению, развиваемому насосом, компрессором или другим источником давления, или давлению, на которое отрегулированы предохранительные устройства. Рабочую температуру принимают равной максимальной или минимальной температуре транспортируемого вещества, установленной технологическим регламентом или другим нормативным документом (СНиП, РД, СН п т.д.).
Состав сооружений магистральных нефтепроводов
В состав магистральных нефтепроводов входят: линейные сооружения, головные и промежуточные перекачивающие и наливные насосные станции и резервуарные парки (рис. 20.1).
В свою очередь линейные сооружения согласно СНиП 2.05.06 — 85 включают: трубопровод (от места выхода с промысла подготовленной к дальнему транспорту товарной нефти) с ответвлениями и лупингами, запорной арматурой, переходами через естественные и искусственные препятствия, узлами подключения нефтеперекачивающих станций, узлами пуска и приема очистных устройств и разделителей при последовательной перекачке, установки электрохимической защиты трубопроводов от коррозии, линии и сооружения технологической связи, средства телемеханики трубопровода, линии электропередачи, предназначенные для обслуживания трубопроводов, и устройства электроснабжения и дистанционного управления запорной арматурой и установками электрохимической защиты трубопроводов; противопожарные средства, противоэррозионные и защитные сооружения трубопровода; емкости для хранения и разгазирования конденсата, земляные амбары для аварийного выпуска нефти, здания и сооружения линейной службы эксплуатации трубопроводов; постоянные дороги и вертолетные площадки, расположенные вдоль трассы трубопровода, и подъезды к ним, опознавательные и сигнальные знаки местонахождения трубопровода; пункты подогрева нефти указатели и предупредительные знаки.
Основные элементы магистрального трубопровода — сваренные в непрерывную нитку трубы, представляющие собой собственно трубопровод. Как правило, магистральные трубопроводы заглубляют в грунт обычно на глубину 0,8 м до верхней образующей трубы, если большая или меньшая глубина заложения не диктуется особыми геологическими условиями или необходимостью поддержания температуры перекачиваемого продукта на определенном уровне (например для исключения возможности замерзания скопившейся воды) Для магистральных трубопроводов применяют цельнотянутые илы сварные трубы диаметром 300—1420 мм. Толщина стенок труб определяется проектным давлением в трубопроводе, которое может достигать 10 МПа. Трубопровод, прокладываемый по районам с вечномерзлыми грунтами или через болота, можно укладывать на опоры или в искусственные насыпи.
На пересечениях крупных рек нефтепроводы иногда утяжеляют закрепленными на трубах грузами или сплошными бетонными покрытиями закрепляют специальными анкерами и заглубляют ниже дна реки. Кроме основной, укладывают резервную нитку перехода того же диаметра. На пересечениях железных и крупных шоссейных дорог трубопровод проходит в патроне из труб, диаметр которых на 100—200 мм больше диаметра трубопровода.
С интервалом 10—30 км в зависимости от рельефа трассы на трубопроводе устанавливают линейные задвижки для перекрытия участков в случае аварии или ремонта.
Вдоль трассы проходит линия связи (телефонная, радиорелейная), которая в основном имеет диспетчерское назначение. Ее можно использовать для передачи сигналов телеизмерения и телеуправления. Располагаемые вдоль трассы станции катодной и дренажной защиты, а также протекторы защищают трубопровод от наружной коррозии, являясь дополнением к противокоррозионному изоляционному покрытию трубопровода.
Нефтеперекачивающие станции (НПС) располагаются на нефтепроводах с интервалом 70—150 км. Перекачивающие (насосные) станции нефтепроводов и нефтепродуктопроводов оборудуются, как правило, центробежными насосами с электроприводом. Подача применяемых в настоящее время магистральных насосов достигает 12500 м3/ч. В начале нефтепровода находится головная нефтеперекачивающая станция (ГНПС), которая располагается вблизи нефтяного промысла или в конце подводящих трубопроводов, если магистральный нефтепровод обслуживают несколько промыслов или один промысел разбросанный на большой территории, ГНПС отличается от промежуточных наличием резервуарного парка объемом, равным двух-, трехсуточной пропускной способности нефтепровода. Кроме основных объектов, на каждой насосной станции имеется комплекс вспомогательных сооружений: трансформаторная подстанция, снижающая подаваемое по линии электропередач (ЛЭП) напряжения от 110 или 35 до 6 кВ, котельная, а также системы водоснабжения, канализации, охлаждения и т.д. Если длина нефтепровода превышает 800 км, его разбивают на эксплуатационные участки длиной 100—300 км, в пределах которых возможна независимая работа насосного оборудования. Промежуточные насосные станции на границах участков должны располагать резервуарным парком объемом, равным 0,3—1,5 суточной пропускной способности трубопровода. Как головная, так и промежуточные насосные станции с резервуарными парками оборудуются подпорными насосами. Аналогично устройство насосных станций магистральных нефтепродуктопроводов.
Тепловые станции устанавливают на трубопроводах, транспортирующих высоко застывающие и высоковязкие нефти и нефтепродукты иногда их совмещают с насосными станциями. Для подогрева перекачиваемого продукта применяют паровые или огневые подогреватели (печи подогрева) для снижения тепловых потерь такие трубопроводы могут быть снабжены теплоизоляционным покрытием.
По трассе нефтепровода могут сооружаться наливные пункты для перевалки и налива нефти в железнодорожные цистерны.
Конечный пункт нефтепровода — либо сырьевой парк нефтеперерабатывающего завода, либо перевалочная нефтебаза, обычно морская, откуда нефть танкерами перевозится к нефтеперерабатывающим заводам или экспортируется за границу.
Список литературы
[Электронный ресурс]//URL: https://drprom.ru/referat/gazliftnyiy-sposob-dobyichi-nefti/
1. А.А. Коршак, А.М. Шаммазов. Основы нефтегазового дела. Уфа. ГУП «Башкортостан».2001.
2.Воздвиженский В.И., Ребрик В.М. «В глубь земли». Разведочное бурение
3.Басниев К.С. Разработка и эксплуатация газовых и газоконденсатных месторождений. М. Недра
4.Бахарев М.С. Грачев С.И. Сорокин П.М. и др.«Справочное руководство для мастеров буровых бригад» Справочное издание.-Сургут: РИИЦ «Нефть Приобья» .2002.
5.Бобрицкий Н.В., Юфин В.А., Основы нефтяной и газовой промышленности. -М.: Недра, 1988.
6.Бойко В.С. Разработка и эксплуатация нефтяных месторождений. М. Недра. 1990.
7.Муравьев М.В. Основы нефтяного и газового дела. М. Недра. 1967.
8.Насосы и компрессоры./С.А. Абдурашитов, А.А. Тупиченков, И.М. Вершинин, С.М. Тененгольц- М.: Недра, 1974.
9.Середа Н.Г. Бурение нефтяных и газовых скважин. М. Недра. 1974.