Термин коррозия происходит от латинского слова corrodere, что означает разъедать, разрушать.
Коррозия — это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.
Коррозия металлов — разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.
В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин «коррозия» употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.
1. Характеристики и сущность коррозионных процессов
Классификация коррозионных сред
неагрессивные;
- слабоагрессивные;
- среднеагрессивные;
- сильноагрессивные.
Для определения степени агрессивности среды при атмосферной коррозии необходимо учитывать условия эксплуатации металлических конструкций зданий и сооружений. Степень агрессивности среды по отношению к конструкциям внутри отапливаемых и неотапливаемых зданий, зданий без стен и постоянно аэрируемых зданий определяется возможностью конденсации влаги, а также температурно-влажностным режимом и концентрацией газов и пыли внутри здания. Степень агрессивности среды по отношению к конструкциям на открытом воздухе, не защищенным от непосредственного попадания атмосферных осадков, определяется климатической зоной и концентрацией газов и пыли в воздухе. С учетом влияния метеорологических факторов и агрессивности газов разработана классификация степени агрессивности сред по отношению к строительным металлическим конструкциям. С учетом влияния метеорологических факторов и агрессивности газов разработана классификация степени агрессивности сред по отношению к строительным металлическим конструкциям, которые представлены в таблице:
Таким образом, защита металлических конструкций от коррозии определяется агрессивностью условий их эксплуатации. Наиболее надежными защитными системами металлических конструкций являются алюминиевые и цинковые покрытия.
Относительная влажность внутри помещений и |
Степень агрессивности среды в зависимости от условий эксплуатации конструкций |
|||
характеристика |
внутри зданий |
|||
Климатической зоны |
на открытом воздухе |
в условиях периодической конденсации влаги |
без конденсации влаги |
|
60 % сухая |
слабая слабая средняя сильная |
неагрессивная слабая средняя средняя |
неагрессивная неагрессивная слабая средняя |
|
61-75 % нормальная |
слабая средняя средняя сильная |
слабая средняя средняя сильная |
неагрессивная слабая средняя средняя |
|
более 75 % влажная |
средняя средняя сильная сильная |
слабая средняя сильная сильная |
слабая средняя средняя средняя |
|
Пример здания с агрессивной средой, Волжский оргсинтез
Год основания 1964.
Скорость коррозии
Оценка и расчет скорости коррозии должны основываться на учете продолжительности и материальном коррозионном эффекте действия на металл наиболее агрессивных факторов.
В зависимости от факторов, влияющих на скорость коррозии, целесообразно следующее подразделение условий эксплуатации металлов, подвергаемых атмосферной коррозии:
- Закрытые помещения с внутренними источниками тепла и влаги (отапливаемые помещения);
- Закрытые помещения без внутренних источников тепла и влаги (неотапливаемые помещения);
- Открытая атмосфера.
Любой коррозионный процесс является многостадийным.
Подвод коррозионной среды или отдельных ее компонентов к поверхности металла.
Взаимодействие среды с металлом.
Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).
Большинство металлов (кроме золота, серебра, платины, меди) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и так далее и называются обычно рудами. Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получении металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл, находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии. Первопричиной коррозии металла является термодинамическая неустойчивость металлов в заданной среде.
2. Классификация коррозионных процессов
а) по типу разрушений
Тип коррозии |
Характеристика формы коррозионного поражения |
Схема типичного вида коррозионного поражения |
|
1. Сплошная (равномерная) коррозия |
Формы коррозионного поражения 1а и 1б отличаются только неровностью поверхности. По изменению формы поверхности до и после коррозионного испытания выявляют наличие коррозии: она определяется изменением массы и размеров образцов до и после коррозионного испытания |
1а 1б |
|
Форма 1в может быть переходной между сплошной и избирательной коррозией, например, 10в, 10г и 10е Тип коррозии может быть уточнен по изменениям ее формы в зависимости от времени воздействия коррозионной среды, а также по структуре металла |
1в |
||
2. Местная (неравномерная) коррозия |
По форме соответствует сплошной коррозии, но отличается тем, что коррозии подвержена часть поверхности или коррозия протекает с разной скоростью на его отдельных участках |
— |
|
3. Коррозия пятнами |
Мелкое коррозионное поражение неправильной формы; размер его площади в случае небольшого увеличения может превышать размер поля зрения |
3 |
|
4. Коррозионная язва |
Коррозионное поражение глубиной приблизительно равной ширине |
4 |
|
5. Питтинговая коррозия |
Коррозионное поражение глубиной значительно больше ширины |
5 |
|
6. Подповерхностная коррозия |
Коррозионное поражение, характерное тем, что занимает на поверхности небольшую площадь и преимущественно сосредоточена под поверхностью металла |
6а |
|
Форма коррозионного поражения, отдельные зоны которого находятся под поверхностью и обычно не имеют заметного прямого выхода на поверхность |
6б |
||
Форма коррозионного поражения, отдельные зоны которого находятся под поверхностью и обычно не имеют заметного прямого выхода на поверхность |
6в |
||
7. Слоевая коррозия |
Коррозионное поражение, внутренние слои которого включают зерна различного размера, различные фазы, включения, выделения и др. |
7 |
|
8. Межкристаллитная коррозия |
Коррозионное поражение характерно наличием прокорродировавшей зоны вдоль границ зерен металла, причем может затрагивать границы всех зерен или только отдельных зерен |
8 |
|
9. Транскристаллитная коррозия |
Коррозионное поражение характерно наличием большого количества транскристаллитных трещин |
9 |
|
10. Избирательная коррозия |
Коррозионное поражение, которому подвергнута определенная структурная фаза или компонент; если фаза образована эвтектикой, определяют, прокорродирована вся эвтектика или некоторая ее составляющая, например, цементит |
10а |
|
Коррозионное поражение, которому подвергнута определенная фаза металла без прямого контакта с прокорродировавшей поверхностью. В этом случае определяют, корродируют ли фазы по границам зерен или внутри зерен основной структуры. Далее определяют, не отличаются ли границы между корродирующими фазами от остальных границ (наличие фазы, трещин). Из этого заключают, проникает ли коррозионная среда по границам зерен или диффузией по всему объему зерен |
10б |
||
Коррозионное поражение, которому подвергнуты только отдельные зерна, физическое состояние которых изменилось, например, вследствие деформации |
10в |
||
Коррозионное поражение, которому подвергнуты только деформируемые части зерен, при этом образующаяся зона коррозионного поражения уже, чем одно зерно и проходит через несколько зерен. Одновременно определяют, не повлияла ли деформация на изменение структуры металла, например, переход аустенита в мартенсит |
10г |
||
Коррозионное поражение в виде зоны с рядами выделенных включений; при этом определяют возможное изменение структуры в данной зоне |
10д |
||
Коррозионное поражение в виде широкой зоны вдоль границы зерна. Данная форма может быть временной и ее нельзя относить к межкристаллитной коррозии; она характерна тем, что не проникает в глубину металла. Более точно ее можно определить по изменениям формы поражения коррозией в зависимости от времени коррозионного воздействия и по выделению структурных частиц в корродирующем сплаве |
10е |
||
Коррозионное поражение, в результате которого образуется новая фаза металлического вида, обладающая способностью понижать стойкость металла |
10ж |
||
Коррозионное поражение, в результате которого изменяется химический состав фазы при сохранении ее формы и местоположения, например, графитизация пластин цементита в чугуне, обесцинкование латуни и др. В зоне этого изменения могут образовываться и другие продукты коррозии, например, окислы |
10з |
||
11. Коррозия в виде редких трещин |
Коррозионное поражение, в результате которого образуется глубокая, немного ветвистая трещина, широкая вблизи поверхности с постепенным переходом в незначительную ширину; трещина заполнена продуктами коррозии |
11а |
|
Коррозионное поражение в виде глубокой трещины незначительной ширины, исходящей из коррозионной язвы на поверхности; трещина может иметь ветвистую форму |
11б |
||
Коррозионное поражение, в результате которого образуется межкристаллитная трещина незначительной ширины при отсутствии продуктов коррозии. По сравнению с межкристаллитной коррозией имеет вид единичных (редких) трещин |
11в |
||
Коррозионное поражение, в результате которого образуется транскристаллитная трещина незначительной ширины со значительным разветвлением. По сравнению с транскристаллитной коррозией имеет вид единичных (редких) трещин. Некоторые трещины могут иметь тип частично транскристаллитного и частично межкристаллитного коррозионного поражения |
11г |
||
Коррозионное поражение, в результате которого образуются трещины незначительной ширины, имеющие вид нитей, преимущественно параллельные поверхности и создающие зону определенной глубины. Их нельзя относить к аналогичным трещинам, образующимся вследствие деформации или плохой обработки образца |
11д |
||
Коррозионное поражение в виде мелких преимущественно коротких трещин внутри отдельных зерен. Трещины могут образоваться, например, вследствие действия молекулярного водорода, большого напряжения, коррозии определенной фазы |
11е |
||
б) по характеру взаимодействия металла со средой различают:
- химическую;
- электрохимическую коррозии.
Химическая коррозия — разрушение металла при химическом взаимодействии с агрессивной средой, которой служат неэлектролиты — жидкости и сухие газы.
Электрохимическая коррозия — разрушение металла под воздействием электролита при протекании двух самостоятельных, но взаимосвязанных процессов — анодного и катодного. Анодный процесс — окислительный, проходит с растворением металла; катодный процесс — восстановительный, обусловлен электрохимическим восстановлением компонентов среды. Современная теория коррозии металлов не исключает совместного протекания химической и электрохимической коррозии, так как в электролитах при определенных условиях возможен перенос массы металла по химическому механизму.
По условиям протекания коррозионного процесса наиболее часто встречаются следующие виды коррозии:
1) газовая коррозия, протекает при повышенных температурах и полном отсутствии влаги на поверхности; продукт газовой коррозии — окалина обладает при определенных условиях защитными свойствами;
2) атмосферная коррозия, протекает в воздухе; различают три вида атмосферной коррозии: во влажной атмосфере — при относительной влажности воздуха выше 40 %; в мокрой атмосфере — при относительной влажности воздуха, равной 100 %; в сухой атмосфере — при относительной влажности воздуха менее 40 %; атмосферная коррозия — один из наиболее распространенных видов вследствие того, что основная часть металлического оборудования эксплуатируется в атмосферных условиях;
3) жидкостная коррозия — коррозия металлов в жидкой среде; различают коррозию в электролитах (кислоты, щелочи, солевые растворы, морская вода) и в неэлектролитах (нефть, нефтепродукты, органические соединения);
4) подземная коррозия — коррозия металлов, вызываемая в основном действием растворов солей, содержащихся в почвах и грунтах; коррозионная агрессивность почвы и грунтов обусловлена структурой и влажностью почвы, содержанием кислорода и других химических соединений, рН, электропроводностью, наличием микроорганизмов;
5) биокоррозия — коррозия металлов в результате воздействия микроорганизмов или продуктов их жизнедеятельности, в биокоррозии участвуют аэробные и анаэробные бактерии, приводящие к локализации коррозионных поражений;
6) электрокоррозия, возникает под действием внешнего источника тока или блуждающего тока;
7) щелевая коррозия — коррозия металла в узких щелях, зазорах, резьбовых и фланцевых соединениях металлического оборудования, эксплуатирующегося в электролитах, в местах неплотного контакта металла с изоляционным материалом;
8) контактная коррозия, возникает при контакте разнородных металлов в электролите;
9) коррозия под напряжением, протекает при совместном воздействии на металл агрессивной среды и механических напряжений — постоянных растягивающих (коррозионное растрескивание) и переменных или циклических (коррозионная усталость);
10) коррозионная кавитация — разрушение металла в результате одновременно коррозионного и ударного воздействий. При этом защитные пленки на поверхности металла разрушаются, когда лопаются газовые пузырьки на поверхности раздела жидкости с твердым телом;
11) коррозионная эрозия — разрушение металла вследствие одновременного воздействия агрессивной среды и механического износа;
12) фреттинг-коррозия — локальное коррозионное разрушение металлов при воздействии агрессивной среды в условиях колебательного перемещения двух трущихся поверхностей относительно друг друга;
13) структурная коррозия, обусловлена структурной неоднородностью сплава; при этом происходит ускоренный процесс коррозионного разрушения вследствие повышенной активности какого-либо компонента сплава;
14) термоконтактная коррозия, возникает за счет температурного градиента, обусловленного неравномерным нагреванием поверхности металла.
3. Методы защиты от коррозии
Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V век до нашей эры) уже имеется упоминание о применении олова для защиты железа от коррозии.
Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих её протекание. Коррозия металлов осуществляется в соответствии с законами природы и поэтому ее нельзя полностью устранить, а можно лишь замедлить.
В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью.
Легирование.
Конструкции из углеродистой стали марок ВСтЗсп 5, ВСтЗпсб ВСтЗкп 2 по ГОСТ 380-88* в агрессивных средах 1 следует применять только при условии обеспечения защиты от коррозии. Низколегированная сталь марок 14Г 2АФ, 16Г 2АФ,09Г 2С, 10Г 2С 1, 15Г 2СФ, 14Г 2АФД, 12Г 2СМФ по коррозионной стойкости близка к углеродистой стали. К защите от коррозии конструкций из стали перечисленных марок предъявляются те же требования, что и к защите конструкций из углеродистой стали.
Повышенной коррозионной стойкостью обладает низколегированная сталь марок 10ХСНД, 15ХСНД, 10ХНДП, 10ХДП, 12ХГДАФ, 08ХГСДП, причем последние четыре марки созданы специально как коррозионностойкие материалы для строительных конструкций. Эти стали целесообразно применять без защиты от коррозии для конструкций, не имеющих нахлесточных соединений, эксплуатируемых на открытом воздухе в слабоагрессивной среде, поскольку на их поверхности образуется плотный слой продуктов коррозии (после 1-3 лет эксплуатации).
В элементах несущих конструкций из стали марки 10ХНДП с толщиной стенки не менее 5 мм, не подлежащих защите от коррозии, очистка поверхности от прокатной окалины не является обязательной.
Сталь марок 10ХСНД и 15ХСНД при атмосферной коррозии практически во всех слабо — и среднеагрессивных средах в 1,5-3 раза более коррозионностойка, чем углеродистая сталь. Поэтому конструкции из стали этих марок, эксплуатируемые на открытом воздухе в сухой зоне влажности при концентрации агрессивных газов по группе А, можно применять без защиты от коррозии. Требования к очистке поверхности стали остаются теми же, что и для стали марки 10ХНДП. В более агрессивных средах на открытом воздухе, а также в агрессивных средах внутри помещений сталь повышенной коррозионной стойкости должна быть защищена от коррозии. Долговечность лакокрасочных покрытий на поверхности стали повышенной коррозионной стойкости по крайней мере в 1,5 раза больше, чем на поверхности углеродистой стали.
Пониженной по сравнению с углеродистой сталью коррозионной стойкостью в атмосфере с серосодержащими газами и в жидких средах обладает марганцовистая сталь марок 09Г 2, 14Г 2, а также сталь 18Г 2АФпс. К защите от коррозии конструкций из стали этих марок предъявляются такие же требования, как и к защите конструкций из углеродистой стали. Тем не менее конструкции из стали пониженной коррозионной стойкости главой СНиП 2.03.11-85 не допускаются в средах с повышенным содержанием сернистого ангидрида и сероводорода (по группам газов Б-Г), поскольку даже под защитными лакокрасочными покрытиями будет протекать избирательная коррозия по включениям сульфида марганца, ускоряющая потерю несущей способности конструкций. Сталь марок 15Г 2СФ, 14Г 2АФ, 16Г 2АФ и 18Г 2АФпс менее подвержена язвенной коррозии, чем марганцовистая или кремнемарганцовистая стали, и на эти марки не распространяются ограничения по применению.
Защитные покрытия.
По механизму защитного действия покрытия могут быть классифицированы как барьерные, т.е. обеспечивающие только изоляцию, протекторные и с комбинированным барьерно-протекторным действием. Применение преобразователей и модификаторов ржавчины как правило недопустимо.
Лакокрасочные покрытия в зависимости от вида пигмента обеспечивают барьерную, комбинированную или протекторную (электрохимическую) защиту стали.
Цинковые защитные покрытия стальных конструкций обеспечивают как протекторную, так и барьерную защиту от коррозии; алюминиевые — обычно только барьерную, а в присутствии хлористых солей или хлора — также и протекторную.
Нанесению лакокрасочных или металлических защитных покрытий должна предшествовать соответствующая подготовка поверхности конструкций; цель подготовки поверхности удаление прокатной окалины, продуктов коррозии, жировых и других загрязнений и придание поверхности шероховатости, улучшающей сцепление с ней защитного покрытия.
Подготовка поверхности стальных конструкций перед нанесением защитных покрытий.
На заводах металлических конструкций применяются следующие основные методы подготовки поверхности проката или конструкций, покрытых продуктами коррозии (окалиной или ржавчиной), независимо от степени окисленности и зажиренности поверхности по ГОСТ 9.402-80*:
механические:
химические:
Подготовка поверхности может производиться:
- на механизированных и автоматизированных технологических линиях очистки проката механическими или химическими методами с последующей консервацией поверхности на время изготовления конструкций;
- консервирующие покрытия не должны препятствовать сварке и в дальнейшем входить в систему лакокрасочного покрытия (грунтовки BJI-02, BJI-023, ЭФ-0121 и т.п.);
- после сварки конструкций в этом случае необходимо производить зачистку сварных швов и околошовной зоны под грунтование;
- очистка проката абразивом производится и перед нанесением металлизационных покрытий;
- в тупиковых камерах дробеструйной очистки или в ваннах травления элементов и конструктивных отправочных марок после их сборки и сварки; подготовка поверхности готовых конструкций и отправочных марок на механизированных технологических линиях целесообразна только при условии достаточной повторяемости конфигураций и габаритов, а также доступности всей поверхности для обработки.
Кислотное травление допускается для собранных конструкций лишь при условии отсутствия карманов и зазоров, в которых может остаться электролит, и не допускается для конструкций из стали 600 МПа и более высокой прочности. Кислотное травление на ЗМК рекомендуется как метод подготовки поверхности стальных конструкций под нанесение металлических (цинковых, алюминиевых) покрытий методом погружения в расплав. Сварные конструкции должны иметь в основном стыковые или угловые соединения. Нахлесточные соединения должны производиться только лобовыми или только фланговыми швами при гарантированном зазоре между элементами не менее 1,5 мм или при сплошной обварке по контуру.
Травление с последующим пассивированием, как и обработка сухим абразивом дробеструйным или дробеметным методами, обеспечивает вторую и третью степени очистки поверхности по ГОСТ 9.402-80; обработка механизированным инструментом допускается при малых объемах работ (зачистка сварных швов, местное удаление продуктов коррозии) обеспечивает при этом третью степень очистки. Главой СНиП 2.03.11-85 эта степень очистки поверхности допускается только для конструкций, эксплуатируемых в слабоагрессивных и неагрессивных средах.
Очистка ручными щетками поверхности конструкций, покрытой прокатной окалиной или толстым слоем ржавчины, не обеспечивает степени очистки свыше четвертой и может быть допущена только для конструкций, предназначенных для эксплуатации в неагрессивных средах. Полное удаление продуктов коррозии почти в 5 раз увеличивает срок службы лакокрасочных покрытий.
Очистка от окислов поверхности рулонных материалов (тонколистовая оцинкованная сталь, алюминий) перед нанесением полимерных покрытий в заводских условиях производится специальными методами. Легкий налет продуктов коррозии, который может быть на поверхности листа, снимается дисковыми щетками из нетканого материала с вкраплениями абразива. За удалением продуктов коррозии следует промывка.
Обезжиривание конструкций перед окрашиванием, как правило, производится в тех случаях, когда металл не покрыт толстыми слоями окалины или ржавчины (холоднокатаная сталь, алюминий) или когда прокат уже защищен металлическими покрытиями, консервационными смазками, межоперационными или консервационными грунтовками (оцинкованная сталь, канаты, очищенный и законсервированный прокат).
Зажиренные участки в этих случаях очищают органическими растворителями, которые не разрушают уже имеющееся защитное покрытие. Исключение составляют случаи, когда необходимо обезжиривание поверхности, зажиренной до первой или второй степеней (ГОСТ 9.402-80), а также перед очисткой от ржавчины ручным или механизированным инструментом или перед кислотным травлением. В тех случаях, когда подготовка поверхности и нанесение покрытий выполняются полностью на монтажных площадках, например, при защите от коррозии рулонируемых конструкций негабаритных резервуаров, очищать поверхности от окислов необходимо сухим абразивом.
Грунтовки и фосфатирование.
Вместо грунтовки иногда проводят фосфатирование поверхности металла. Для этого на чистую поверхность кистью или распылителем наносят растворы ортофосфатов железа (III), марганца (II) или цинка (II), содержащих и саму ортофосфорную кислоту H 3 PO4 . В заводских условиях фосфатирование ведут при 99-97 0 С в течение 30-90 минут. В образование фосфатного покрытия вносят вклад металл, растворяющийся в фосфатирующейся смеси, и оставшиеся на его поверхности оксиды.
Для фосфатирования поверхности стальных изделий разработано несколько различных препаратов. Большинство из них состоят из смеси фосфатов марганца и железа. Возможно, наиболее распространенным препаратом является «мажеф» — смесь дигидрофосфатов марганца Mn(H 2 PO4 )2 , железа Fe(H2 PO4 )2 и свободной фосфорной кислоты. Название препарата состоит из первых букв компонентов смеси. По внешнему виду мажеф — это мелкокристаллический порошок белого цвета с соотношением между марганцем и железом от 10:1 до 15:1. Он состоит из 46-52 % P2 O5 ; не менее 14 % Mn; 0,3-3 % Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до ста градусов. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последовательного нанесения органических защитных и декоративных покрытий — лаков, красок, смол. Процесс фосфатирования длится 40-60 минут. Для его ускорения в раствор вводят 50-70 г/л нитрата цинка. В этом случае время сокращается в 10-12 раз.
Электрохимическая защита., Силикатные покрытия.
Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу, вследствие чего и начинается коррозия.
Цементные покрытия.
4. Защита стальных строительных конструкций от коррозии металлическими покрытиями
Горячее цинкование и алюминирование . Процесс нанесения покрытия основан на погружении сварных конструкций или проката в расплавленный металл. Толщина покрытия на конструкциях из толстолистового или профильного проката колеблется в широких пределах (60-200 мкм) и зависит от продолжительности нанесения покрытий, состава ванны, температуры расплавленного металла или сплава, конструктивной формы и скорости извлечения конструкции из ванны. Процесс отличается простотой технологии и высокой производительностью.
Возможные ограничения в применении горячего цинкования или алюминирования связаны: с габаритами ванн (в настоящее время глубина вертикальных ванн для цинкования в РФ достигает 7 м, размеры зеркала ванны — до 2×2 м).
Более перспективны горизонтальные ванны, длина которых может достигать 20 м. Однако следует считаться с возможным короблением при нагреве тонкостенных конструкций и с невозможностью получить качественное покрытие в нахлесточных соединениях, если не обеспечен зазор между элементами не менее 1,5 мм или не выполнена обварка по контуру.
Металлизационные покрытия
При малых толщинах металлизационное покрытие пористое и требует дополнительной пропитки, а получение толстых слоев (150-300 мкм) при ручном нанесении покрытия — длительный процесс, поэтому желательна механизация работ на линиях. Эффективность металлизации труб и листовых конструкций на линиях по расходу материалов и производительности труда сопоставима с эффективностью горячего цинкования или алюминирования.
Преимущества металлизационных покрытий, наносимых распылением, по сравнению с покрытиями, полученными погружением в расплав, следующие:
- можно получать практически любую заданную толщину, в связи с чем целесообразно применять относительно тонкие металлизационные покрытия как подслой под лакокрасочное покрытие для конструкций, эксплуатируемых в средне- или сильноагрессивных средах;
- покрытия можно наносить на конструкции любых габаритов, в том числе после монтажа;
- можно получать металлизационные покрытия заданного состава, например алюминий с цинком (псевдосплав).
Гальванические покрытия . Гальваническим методом наносят на поверхность стали цинковые, кадмиевые, хромовые и другие металлические покрытия. Гальванические покрытия получают осаждением металлов из растворов или расплавов солей под действием электрического тока на поверхности защищаемых изделий. Метод применяется для защиты относительно мелких деталей. Толщина гальванического покрытия в зависимости от материала покрытия обычно не превышает 20 мкм. Заданную толщину покрытия можно регулировать с точностью до нескольких микрон.
Ингибиторы.
Ингибирующее воздействие на металлы, прежде всего на сталь, оказывает целый ряд неорганических и органических веществ, которые часто добавляются в среду, вызывающую коррозию. Ингибиторы имеют свойство создавать на поверхности металла очень тонкую пленку, защищающую металл от коррозии.
Ингибиторы в соответствии с Х. Фишером можно сгруппировать следующим образом.
1) Экранирующие, то есть покрывающие поверхность металла тонкой пленкой. Пленка образуется в результате поверхностной адсорбции. При воздействии физических ингибиторов химических реакций не происходит.
2) Окислители (пассиваторы) типа хроматов, вызывающие образование на поверхности металла плотно прилегающего защитного слоя окисей, которые замедляют протекание анодного процесса. Эти слои не очень стойки и при определенных условиях могут подвергаться восстановлению. Эффективность пассиваторов зависит от толщины образующегося защитного слоя и его проводимости.
3) Катодные — повышающие перенапряжение катодного процесса. Они замедляют коррозию в растворах неокисляющих кислот. К таким ингибиторам относятся соли или окислы мышьяка и висмута.
Эффективность действия ингибиторов зависит в основном от условий среды, поэтому универсальных ингибиторов нет. Для их выбора требуется проведение исследований и испытаний.
Наиболее часто применяются следующие ингибиторы: нитрит натрия, добавляемый, например, к холодильным соляным растворам, фосфаты и силикаты натрия, бихромат натрия, различные органические амины, сульфоокись бензила, крахмал, танин и т. п. Поскольку ингибиторы со временем расходуются, они должны добавляться в агрессивную среду периодически. Количество ингибитора, добавляемого в агрессивные среды, невелико. Например, нитрита натрия добавляют в воду в количестве 0,01-0,05 %.
Ингибиторы подбираются в зависимости от кислого или щелочного характера среды. Например, часто применяемый в качестве ингибитора нитрит натрия может использоваться в основном в щелочной среде и перестает быть эффективным даже в слабокислых средах.
5. Применение противокоррозионных защитных покрытий
Для защиты оборудования и строительных конструкций от коррозии в отечественной и зарубежной противокоррозионной технике применяется большой ассортимент различных химически стойких материалов — листовые и пленочные полимерные материалы, биопластмассы, стеклопластики, углеграфитовые, керамические и другие неметаллические химически стойкие материалы.
В настоящее время расширяется применение полимерных материалов, благодаря их ценным физико-химическим показателям, меньшему удельному весу и др. коррозионный процесс защитное покрытие
Большой интерес для применения в противокоррозионной технике представляет новый химически стойкий материал — шлакоситалл.
Значительные запасы и дешевизна исходного сырья — металлургических шлаков — обусловливают экономическую эффективность производства и применения шлакоситалла.
Шлакоситалл по физико-механическим показателям и химической стойкости не уступает основным кислотоупорным материалам (керамике, каменному литью), широко применяемым в противокоррозионной технике.
Среди многочисленных полимерных материалов, применяемых за рубежом в противокоррозионной технике, значительное место занимают конструкционные пластмассы, а также стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей.
В настоящее время химическая промышленность выпускает значительный ассортимент материалов, обладающих высокой стойкостью к действию различных агрессивных сред. Особое место среди этих материалов занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, теплостоек до температуры + 700 0 С и так далее.
Другими направлениями использования полиэтилена в качестве химически стойкого материала являются порошкообразное напыление и дублирование полиэтилена стеклотканью. Широкое применение полиэтиленовых покрытий объясняется тем, что они, будучи одними из самых дешевых, образуют покрытия с хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением.
Также в противокоррозионной технике особого внимания заслуживают монолитные полы на основе синтетических смол. Высокая механическая прочность, химическая стойкость, декоративный вид — все эти положительные качества делают монолитные полы чрезвычайно перспективными.
Продукция лакокрасочной промышленности находит применение в различных отраслях промышленности и строительства в качестве химически стойких покрытий. Лакокрасочное пленочное покрытие, состоящее из последовательно наносимых на поверхность слоев грунтовки, эмали и лака, применяют для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоходов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям твердых частиц, входящих в состав среды.
В последнее время большое внимание уделяется получению и применению комбинированных покрытий, поскольку в ряде случаев использование традиционных методов защиты является неэкономичным. В качестве комбинированных покрытий, как правило, используется цинковое покрытие с последующей окраской. При этом цинковое покрытие играет роль грунтовки.
Перспективно применение резин на основе бутилкаучука, которые отличаются от резин на других основах повышенной химической стойкостью в кислотах и щелочах, включая концентрированную азотную и серную кислоты. Высокая химическая стойкость резин на основе бутилкаучука позволяет более широко применять их при защите химической аппаратуры.
Данные способы находят широкое применение в промышленности в силу многих своих преимуществ — уменьшения потерь материалов, увеличения толщины покрытия, наносимого за один слой, уменьшения расхода растворителей, улучшение условий производства окрасочных работ и т.д.
Заключение
Металлы составляют одну из основ цивилизации на планете Земля. Их широкое внедрение в промышленное строительство и транспорт произошло на рубеже XVIII-XIX. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Начало практического использования человеком железа относят к IX веку до нашей эры. Именно в этот период человечество перешло из бронзового века в век железный.
В XXI веке высокие темпы развития промышленности, интенсификация производственных процессов, повышение основных технологических параметров (температура, давление, концентрация реагирующих средств и др.) предъявляют высокие требования к надежной эксплуатации технологического оборудования и строительных конструкций. Особое место в комплексе мероприятий по обеспечению бесперебойной эксплуатации оборудования отводится надежной защите его от коррозии и применению в связи с этим высококачественных химически стойких материалов.
Необходимость осуществления мероприятий по защите от коррозии диктуется тем обстоятельством, что потери от коррозии приносят чрезвычайно большой ущерб. По имеющимся данным, около 10 % ежегодной добычи металла расходуется на покрытие безвозвратных потерь вследствие коррозии и последующего распыления. Основной ущерб от коррозии металла связан не только с потерей больших количеств металла, но и с порчей или выходом из строя самих металлических конструкций, т.к. вследствие коррозии они теряют необходимую прочность, пластичность, герметичность, тепло- и электропроводность, отражательную способность и другие необходимые качества. К потерям, которые терпит народное хозяйство от коррозии, должны быть отнесены также громадные затраты на всякого рода защитные антикоррозионные мероприятия, ущерб от ухудшения качества выпускаемой продукции, выход из строя оборудования, аварий в производстве и так далее.
Защита от коррозии является одной из важнейших проблем, имеющей большое значение для народного хозяйства.
Список использованной литературы
[Электронный ресурс]//URL: https://drprom.ru/referat/metodyi-zaschityi-ot-korrozii-metallov/
1. Металлические конструкции. В Зт. Т.1. Общая часть. (Справочник-проектировщика)/ Под общ. ред. заслуж. строителя РФ, лауреата госуд. премии СССР В.В. Кузнецова (ЦНИИпроектстальконструкция им. Н.П. Мельникова) — М.: изд-во АСВ, 1998,- 576 стр. с илл.
2. ГОСТ 9.908-85. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости.
3. СП 28.13330.2012 Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85.
4. Андреев И.Н. Коррозия металлов и их защита. — 1979.
5. Улиг Г.Г., Реви Р.У. Коррозия и борьба c ней. — 1989.