Состав нефти и газа. Методы их исследования

Реферат

Топливно-энергетический комплекс (ТЭК) является одной из основ экономики России. Сотни тысяч его специалистов трудятся во всех уголках пашей Родины, обеспечивая её нефтью и газом. Кроме того тысячи молодых специалистов, закончив ВУЗы, ежегодно вливаются в ТЭК. Свой путь к будущей специальности они начинали с изучения основ нефтегазового дела.

Вот и я решил изучить состав нефти и природного газа. Решил проникнуться основами этих двух главенствующих составляющих большой системы.

Знание состава нефти и газа поможет мне в дальнейшем без труда усвоить основы моей профессии.

1. Состав нефти

В химическом отношении нефть — сложная смесь углеводородов (УВ) и углеродистых соединений. Она состоит из следующих основных элементов: углерод (84-87%), водород (12-14%), кислород, азот, сера (1-2%).

Содержание серы может доходить до 3-5%. В нефти выделяют следующие части: углеводородную, асвальто-смолистую, порфирины, серу и зольную. В каждой нефти имеется растворенный газ, который выделяется, когда она выходит на земную поверхность.

1.1 Углеводородная часть

Главную часть нефти составляют углеводороды различные по своему составу, строению и свойствам, которые могут находиться в газообразном, жидком и твердом состоянии. В зависимости от строения молекул они подразделяются на три класса — парафиновые, нафтеновые и ароматические. Но значительную часть нефти составляют углеводороды смешанного строения, содержащие структурные элементы всех трех упомянутых классов. Строение молекул определяет их химические и физические свойства.

Парафиновые

Для углерода характерна способность образовывать цепочки, в которых его атомы соединены последовательно друг с другом. Остальными связями к углероду присоединены атомы водорода. Количество атомов углерода в молекулах парафиновых УВ превышает количество атомов водорода в 2 раза, с некоторым постоянным во всех молекулах избытком, равным 2. Иначе говоря, общая формула углеводородов этого класса С n Н2n+2 . Парафиновые углеводороды химически наиболее устойчивы и относятся к предельным УВ.

В зависимости от количества атомов углерода в молекуле углеводороды могут принимать одно из трех агрегатных состояний. Например, если в молекуле от одного до четырех атомов углерода (СН 4 — С4 Н10 ), то УВ представляют собой газ, от 5 до 16 (С5 Н16 — С16 Н34 ) — это жидкие УВ, а если больше 16 (С17 Н36 и т.д.) — твердые.

3 стр., 1392 слов

Специфика формирования технологической части дипломного проекта

... с ограничением сроков реализации и оформления результатов. Роль технологической части дипломной работы Технологический раздел дипломной работы играет важнейшую роль в подготовке и оценке новоиспеченного специалиста. ... цикла и пр.). Какие источники информации кладут в основу технологической части дипломной работы? Технологическая часть ВКР представлена в виде всевозможных расчетов, схем и графиков, ...

Таким образом, парафиновые углеводороды в нефти могут быть представлены газами, жидкостями и твердыми кристаллическими веществами. Они по-разному влияют на свойства нефти: газы понижают вязкость и повышают упругость паров; жидкие парафины хорошо растворяются в нефти только при повышенных температурах, образуя гомогенный раствор; твердые парафины также хорошо растворяются в нефти, образуя истинные молекулярные растворы. Парафиновые УВ (за исключением церезинов) легко кристаллизуются в виде пластинок и пластинчатых лент.

Нафтеновые

Все связи углерода и водорода здесь насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами. По сравнению с парафинами, нафтены имеют более высокую плотность и меньшую упругость паров и имеют лучшую растворяющую способность.

Ароматические

Для ароматических УВ характерны большая растворяемость, более высокая плотность и температура кипения.

1.2 Асфальто-смолистая часть

Асфальто-смолистая часть нефти представляет собой вещество темного окраса, которое частично растворяется в бензине. Растворившееся часть — асфальтены. Они обладают способностью набухать в растворителях, а затем переходить в раствор. Растворимость асфальтенов в смолисто-углеродных системах возрастает с уменьшением концентрации легких УВ и увеличением концентрации ароматических углеводородов. Смола не растворяется в бензине и являются полярными веществами с относительной молекулярной массой 500-1200. В них содержатся основное количество кислородных, сернистых и азотистых соединений нефти. Асфальто-смолистые вещества и другие полярные компоненты являются поверхностно-активными соединениями нефти и природными стабилизаторами водонефтяных эмульсий.

1.3 Фракционный состав

Важнейшим показателем качества нефти является фракционный состав.

Фракционный состав определяется при лабораторной перегонке с использованием метода постепенного испарения, в процессе которой при постепенно повышающейся температуре из нефти отгоняют части — фракции, отличающиеся друг от друга пределами выкипания. Каждая из фракций характеризуется температурами начала и конца кипения.

Промышленная перегонка нефти основывается на схемах с так называемым однократным испарением и дальнейшей ректификацией.

Фракции, выкипающие до 350 о С, отбирают при давлении несколько превышающим атмосферное, называют светлыми дистиллятами (фракциями).

Названия фракциям присваиваются в зависимости от направления их дальнейшего использования.

В основном, при атмосферной перегонке получают следующие светлые дистилляты:

140 о С (начало кипения) — бензиновая фракция,

140-180 о С — лигроиновая фракция (тяжелая нефть),

140-220 о С (180-240о С) — керосиновая фракция,

180-350 о С (220-350о С, 240-350о С) — дизельная фракция (легкий или атмосферный газойль, соляровый дистиллят).

Фракция, выкипающая выше 350 о С является остатком после отбора светлых дистиллятов и называется мазутом. Мазут разгоняют под вакуумом и в зависимости от дальнейшего направления переработки нефти получают следующие фракции:

5 стр., 2140 слов

Экономическая часть дипломной работы строительство

... страниц. Презентация, представляющая отчет о выполненной дипломной работе и результаты работы. ПЕРЕЧЕНЬ ВОПРОСОВ, ПОДЛЕЖАЩИХ РАЗРАБОТКЕ В ПОЯСНИТЕЛЬНОЙ ЗАПИСКЕ Постановка задачи Общая часть Практическая часть, Экономическая часть, Заключение:, Приложения:, Список используемой литературы, ...

  • для получения топлив — 350-500 о С вакуумный газойль (дистиллят), >500о С вакуумный остаток (гудрон);
  • для получения масел — 300-400 о С (350-420о С) легкая масляная фракция (трансформаторный дистиллят), 400-450о С (420-490о С) средняя масляная фракция (машинный дистиллят), 450-490о С тяжелая масляная фракция (цилиндровый дистиллят), >490о С гудрон.

Мазут и полученные из него фракции — темные.

Таким образом фракционирование — это разделение сложной смеси компонентов на более простые смеси или отдельные составляющие.

Продукты, получаемые как при первичной, так и при вторичной переработки нефти, относят к светлым, если они выкипают до 350 о С, и к темным, если пределы выкипания 350о С и выше.

Нефти различных месторождений заметно отличаются по фракционному составу, содержанию светлых и темных фракций.

В технических условиях на нефть и нефтепродукты нормируются:

  • температура начала кипения;
  • температура, при которой отгоняется 10,50,90 и 97.5% от загрузки, а также остаток в процентах;
  • иногда лимитируется температура конца кипения.

1.4 Содержание воды

нефть фракционный природный газ

При добыче и переработке нефть дважды смешивается с водой: при выходе с большой скоростью из скважины вместе с сопутствующей ей пластовой водой и в процессе обессоливания, т.е. промывки пресной водой для удаления хлористых солей.

В нефти и нефтепродуктах вода может содержаться в виде простой взвеси, тогда она легко отстаивается при хранении, либо в виде стойкой эмульсии, тогда прибегают к особым приемам обезвоживания нефти.

Образование устойчивых нефтяных эмульсий приводит к большим финансовым потерям. При небольшом содержании пластовой воды в нефти удорожается транспортировка ее по трубопроводам, потому что увеличивается вязкость нефти, образующей с водой эмульсию. После отделения воды от нефти в отстойниках и резервуарах часть нефти сбрасывается вместе с водой в виде эмульсии и загрязняет сточные воды.

Часть эмульсии улавливается ловушками, собирается и накапливается в земляных амбарах и нефтяных прудах, где из эмульсии испаряются легкие фракции и она загрязняется механическими примесями. Такие нефти получили название «амбарные нефти». Они высокообводненные и смолистые, с большим содержанием механических примесей, трудно обезвоживаются.

Содержание воды в нефти является самой весомой поправкой при вычислении массы нетто нефти по массе брутто. Этот показатель качества, наряду с механическими примесями и хлористыми солями, входит в уравнение для определения массы балласта.

Присутствуя в нефти, особенно с растворенными в ней хлористыми солями, вода осложняет ее переработку, вызывая коррозию аппаратуры.

Имеющаяся в карбюраторном и дизельном топливе, вода снижает их теплотворную способность, засоряет и вызывает закупорку распыляющих форсунок.

При уменьшении температуры кристаллики льда засоряют фильтры, что может служить причиной аварий при эксплуатации авиационных двигателей. Содержание воды в масле усиливает ее склонность к окислению, ускоряет процесс коррозии металлических деталей, соприкасающихся с маслом.

Следовательно, вода оказывает негативное влияние как на процесс переработки нефти, так и на эксплуатационные свойства нефтепродуктов и количество ее должно строго нормироваться.

Точность метода определения содержания воды по ГОСТ 2477-65:

Сходимость

  • 0.1 см 3 — при объеме воды, меньшем или равным 1.0 см3 ;
  • 0.1 см 3 или 2% от среднего значения объема (в зависимости от того, какая из этих величин больше) — при объеме воды более 1.0 см3 .

Воспроизводимость

  • 0.1 см 3 — при объеме воды, меньшем или равным 1.0 см3 ;
  • 0.2 см 3 или 10% от среднего значения объема (в зависимости от того, какая из этих величин больше) — при объеме воды свыше 1.0 см3 до 10 см3 ;
  • 5% от величины среднего результата — при объеме воды более 10 см 3 .

Согласно ГОСТ 2477-65 массовая доля воды должна составлять не более чем 0.5-1% в зависимости от степени подготовки нефти.

1.5 Содержание механических примесей

Присутствие мех. примесей объясняется условиями залегания нефти и способами их добычи.

Механические примеси нефти состоят из взвешенных в ней высокодисперсных частиц песка, глины и других твердых пород, которые, адсорбируясь на поверхности глобул воды, способствуют стабилизации нефтяной эмульсии. При перегонке нефти примеси могут частично оседать на стенках труб, аппаратуры и трубчатых печей, что приводит к ускорению процесса износа аппаратуры.

В отстойниках, резервуарах и трубах при подогреве нефти часть высокодисперсных механических примесей коагулирует, выпадает на дно и отлагается на стенках, образуя слой грязи и твердого осадка. При этом уменьшается производительность аппаратов, а при отложении осадка на стенках труб уменьшается их теплопроводность.

В таблице 1 приводятся следующие оценки достоверности результатов определения содержания механических примесей при доверительной вероятности 95%:

Таблица 1. ? Содержание механических примесей

Механические примеси, %

Повторяемость, %

Воспроизводимость, %

До 0.01

0.0025

0.005

Св. 0.001 до 0.1

0.005

0.01

Св. 0.1 до 1.0

0.01

0.02

Св. 1.0

0.1

0.20

Массовая доля механических примесей до 0.005% включительно оценивается как их отсутствие.

ГОСТ 9965-76 также устанавливает массовую долю механических примесей в нефти, которая может быть не более 0.05%.

1.6 Содержание серы

Сера и ее соединения являются постоянными составляющими частями сырой нефти. По химической природе — это соединения сульфидов, гомологов тиофана и тиофена. Кроме указанных соединений, в некоторых нефтях встречаются сероводород, меркаптаны и дисульфиды.

Меркаптаны или тиоспирты — легколетучие жидкости с чрезвычайно отвратительным запахом; сульфиды или тиоэфиры — нейтральные вещества, нерастворяющиеся в воде, но растворяющиеся в нефтепродуктах; дисульфиды или полисульфиды — тяжелые жидкости с неприятным запахом, легко растворяющиеся в нефтепродуктах, и очень мало в воде; тиофен — жидкость, не растворяющаяся в воде.

Соединения серы в нефти, как правило, являются вредной примесью. Они токсичны, имеют неприятный запах, способствуют отложению смол, в соединениях с водой вызывают интенсивную коррозию металла. Особенно в этом отношении опасны сероводород и меркаптаны. Они обладают высокой коррозийной способностью, разрушают цветные металлы и железо. Поэтому их присутствие в товарной нефти не допустимо.

Точность метода определения серы согласно ГОСТ 1437-75 выражается следующими показателями:

1) Сходимость

2) Воспроизводимость

Таблица 2. ? Сходимость и воспроизводимость метода определения

серы

Массовая доля серы, %

Сходимость, %

Воспроизводимость, %

До 1.0

0.05

0.20

Св. 1.0 до 2.0

0.05

0.25

Св. 2.0 до 3.0

0.10

0.30

Св. 3.0 до 5.0

0.10

0.45

1.7 Содержание парафина

При транспортировании нефтей, содержащих парафин, по трубопроводам на их стенках, а также на деталях оборудования часто откладывается парафин. Это объясняется как тем, что температура стенок трубопровода может быть ниже, чем у перекачиваемой жидкости, так и тем, что частицы парафина, выделившиеся из нефти вследствие высокой концентрации или колебания температуры на различных участках трубопровода, прилипают к его стенкам. Это приводит к уменьшению эффективного сечения труб и оборудования, что в свою очередь требует повышения давления в насосов для поддержания необходимого расхода (объема протекающей жидкости) и может привести к снижению производительности всей системы.

Таким образом, знание содержания в нефтях и нефтепродуктах количества парафина и температуры его массовой кристаллизации позволяет определить технологический режим эксплуатации магистральных трубопроводов.

ГОСТ 11851-85 регламентирует два метода определения парафина. Метод А заключается в предварительном удалении асфальто-смолистых веществ из нефти, их экстракции и адсорбции, и последующего выделения парафина смесью ацетона и толуола при температуре минус 20 о С. При использовании метода Б предварительное удаление асфальто-смолистых веществ осуществляется вакуумной перегонкой с отбором фракций 250-550о С и выделение парафина растворителями (смесь спирта и эфира) при температуре минус 20о С.

2. Состав природных газов

Природные газы подразделяют на три группы:

  • газы, добываемые из чисто газовых месторождений, представляют собой сухой газ без тяжелых углеводородов;
  • газы, добываемые из нефтяных месторождений вместе с нефтью, представляют собой смесь сухого газа с газообразным бензином и пропанобутановой фракцией;
  • газы, добываемые из конденсатных месторождений, представляют собой смесь сухого газа и конденсата.

Природные газы состоят преимущественно из предельных углеводородов, но в них встречаются также сероводород, азот, углекислота, водяные пары.

Газы, добываемые из чисто газовых месторождений, состоят в основном из метана.

Газ и нефть в толще земли заполняют пустоты пористых пород, и при больших их скоплениях целесообразна промышленная разработка и эксплуатация залежей.

Давление в пласте зависит от глубины его залегания. Практически через каждые 10 м глубины давление в пласте возрастает на 0,1 МПа (1 кг/см 2 ).

В состав газообразного топлива входят горючая и негорючая части. Чем больше горючая часть топлива, тем больше удельная теплота его сгорания. Различия в физико-химических и теплотехнических характеристиках газового топлива обусловлены разным количеством в составе газа горючих и негорючих газообразных компонентов (балластов), а также вредных примесей.

2.1 Горючие компоненты

Водород Н 2 . Бесцветный нетоксичный газ без вкуса и запаха, масса 1 м3 которого равна 0,09 кг. Он в 14,5 раза легче воздуха. Водородно-воздушные смеси легко воспламенимы и весьма пожаро- и взрывоопасны.

Метан СН 4 . Бесцветный нетоксичный газ без запаха и вкуса. В состав метана входит 75% углерода и 25% водорода; масса 1 м3 метана равна 0,717 кг. При атмосферном давлении и температуре -162°С метан сжижается и его объем уменьшается почти в 600 раз. Поэтому сжиженный природный газ является перспективным энергоносителем для многих отраслей народного хозяйства. Содержание метана в природных газах достигает 98%, поэтому его свойства практически полностью определяют свойства природных газов. Природные и попутные газы, состоящие в основном из метана, представляют собой не только высококалорийное топливо, но ценное сырье для химической промышленности.

Оксид углерода СО.

Оксид углерода легко вступает в соединение с гемоглобином крови. При содержании в воздухе 0,04% СО примерно 30% гемоглобина крови вступает в химическое соединение с оксидом углерода, при 0,1% СО — 50%, при 0,4% — более 80%. Оксид углерода относится к высокотоксичным газам, и находиться в помещении, воздух которого содержит 0,2% СО, в течение 1 ч вредно для организма, а при содержании 0,5% СО находиться в помещении даже в течение 5 мин опасно для жизни.

2.2 Негорючие компоненты

Азот N 2 . Бесцветный газ без запаха и вкуса. Плотность азота равна 1,25 г/м3 . Азот практически не реагирует с кислородом, поэтому при расчете процесса горения его рассматривают как инертный газ. Содержание азота в различных газах колеблется в значительных пределах.

Углекислый газ СО, Кислород О

2.3 Вредные примеси, Сероводород H

Сероводород, воздействуя на металлы, образует сульфиды. Он оказывает сильное корродирующее воздействие на газопроводы, особенно при одновременном присутствии в газе H 2 S Н2 О и О2 . При сжигании сероводород образует сернистый газ, вредный для здоровья и оказывающий коррозионное воздействие на металлические поверхности. Содержание сероводорода в газе не должно превышать 2 га на 100 м3 газа.

Цианистоводородная (синильная) кислота HCN.

2.4 Особенности природных газов

Природный газ является высокоэффективным энергоносителем и ценным химическим сырьем. Он имеет ряд преимуществ по сравнению с другими видами топлива и сырья:

  • стоимость добычи природного газа значительно ниже, чем других видов топлива;
  • производительность труда при его добыче выше, чем при добыче нефти и угля;
  • отсутствие в природных газах оксида углерода предотвращает возможность отравления людей при утечках газа;
  • при газовом отоплении городов и населенных пунктов гораздо меньше загрязняется воздушный бассейн;
  • при работе на природном газе обеспечивается возможность автоматизации процессов горения, достигаются высокие КПД;
  • высокие температуры в процессе горения (более 2000°С) и удельная теплота сгорания позволяют эффективно применять природный газ в качестве энергетического и технологического топлива.

Природный газ как промышленное топливо имеет следующие технологические преимущества:

  • при сжигании требуется минимальный избыток воздуха;
  • содержит наименьшее количество вредных механических и химических примесей, что позволяет обеспечить постоянство процесса горения;
  • при сжигании газа можно обеспечить более точную регулировку температурного режима, чем при сжигании других видов топлива, это позволяет экономить топливо;
  • газовые горелки можно располагать в любом месте печи, что позволяет улучшить процессы теплообмена и обеспечить устойчивый температурный режим;
  • при использовании газа отсутствуют потери от механического недогорания топлива;
  • форма газового пламени сравнительно легко регулируется, что позволяет в случае необходимости быстро обеспечить высокую степень нагрева в нужном месте.

Вместе с тем газовому топливу присущи и некоторые отрицательные свойства. Смеси, состоящие из определенного количества газа и воздуха, являются пожаро- и взрывоопасными. При внесении в такие смеси источника огня и высоко нагретого тела происходит их возгорание (взрыв).

Горение газообразного топлива возможно только при наличии воздуха, в котором содержится кислород, причем процесс возгорания (взрыва) происходит при определенных соотношениях газа и воздуха.

2.5 Обнаружение утечки газа

Для того чтобы своевременно обнаружить утечку, все горючие газы, направленные в городские газопроводы, подвергают одоризации, т.е. придают им резкий специфический запах, по которому их легко обнаружить даже при незначительных концентрации в воздухе помещений.

Одоризация газов производится с помощью специальных жидкостей, обладающих сильным запахом. Наиболее часто в качестве одоранта применяют этидмеркаптан. При этом запах газа должен ощущаться при концентрации его в воздухе не более 1 / 5 части нижнего предела взрываемости. Практически это означает, что природный газ, имеющий нижний предел взрываемости, равный 5%, должен чувствоваться в воздухе помещений при 1%-ной концентрации. Запах сжиженных газов должен ощущаться при 0,5%-ной концентрации их в объеме помещения.

Заключение

В химическом отношении нефть — сложнейшая смесь углеводородов, подразделяющаяся на две группы — тяжелую и легкую нефть. Легкая нефть содержит примерно на два процента меньше углерода, чем тяжелая, зато соответственно, большее количество водорода и кислорода.

Главную часть нефтей составляют три группы углеводородов — алканы, нафтены и арены.

Кроме углеродной части в нефти имеются асфальто-смолистая составляющая, порфирины, сера и зольная часть.

Асфальто-смолистая часть — темное плотное вещество, которое частично растворяется в бензине. Растворяющуюся часть называют асфальтеном, а нерастворяющуюся, понятно, смолой.

Порфирины — особые органические соединения, имеющие в своем составе азот. Многие ученые полагают, что когда-то они образовались из хлорофилла растений и гемоглобина животных.

Серы в нефти бывает довольно много — до 5%, и она приносит немало хлопот нефтяникам, вызывая коррозию металлов.

К сказанному, пожалуй, можно добавить, что геологический сосед нефти — природный газ — тоже непростое по своему составу вещество. Больше всего — до 95% по объему — в этой смеси метана. Присутствуют также этан, пропан, бутаны и другие алканы — от С5 и выше. Более тщательный анализ позволил обнаружить в природном газе и небольшие количества гелия.

Список используемой литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/opredelenie-soderjaniya-mehanicheskih-primesey-v-nefti/

1. Бордовский М.В. Геология и геохимия нефти и газа. / М.В. Бордовский, А.А. Бакиров, В.И. Ермолкин. — М.: Астрель, 1993. — 461 с.

2. Казимов К.Г. Справочник работника газового хозяйства: Справ. пособие. / К.Г. Казимов. — М.: Высш. шк., 2006. — 279 с.

3. Коршак А.А. Основы нефтегазового дела. / А.А. Коршак, А.М. Шаммазов. — Уфа.: ООО «Дизайн Полиграф Сервис», 2001. — 544 с.