Пожарный извещатель пламени

Извещатели пламени применяются, как правило, для защиты зон, где необходима высокая эффективность обнаружения, поскольку обнаружение пожара извещателями пламени происходит в начальной фазе пожара, когда температура в помещении ещё далека от значений, при которых срабатывают тепловые пожарные извещатели. Извещатели пламени обеспечивают возможность защиты зон со значительным теплообменом и открытых площадок, где невозможно применение тепловых и дымовых извещателей. Извещатели пламени применяются для организации контроля наличия перегретых поверхностей агрегатов при авариях, например, для обнаружения пожара в салоне автомобиля, под обшивкой агрегата, контроля наличия твердых фрагментов перегретого топлива на транспортере.

Эффективны в случае, если первоначальным источником пожара является поджог, совершенный забросом в помещение емкости с горящей ЛВЖ. [1]


1. Деление по спектрам

Спектральная чувствительность — это чувствительность фотоприемника к излучению с различной длиной волны; она определяется природой вещества, из которого сделан в приборе светочувствительный слой и может изменяться в широких пределах. Такие приемники лучистой энергии, как термоэлементы, болометры, оптико-акустические приемники, не обладают избирательной чувствительностью в различных участках спектра.

Для измерения излучения в узком диапазоне применяются светофильтры, представляющие собой пластины, пропускающие излучение определённого спектрального состава. Для видимой части спектра используют цветные стекла, для ИК-фильтров — слюда, фтористый литий, каменная соль, сильвин, бромистый калий и др [2] .


1.1. Видимый

1.2. Ультрафиолетовый (УФ)

Этот вид датчиков стал использоваться в системах пожарной сигнализации не так давно, однако с каждым днем он становится все популярнее. Чаще всего производители УФ-датчиков используют диапазон от 185 до 280 нм -область жесткого ультрафиолета. Земная атмосфера защищает нас от жестких солнечных УФ-лучей, в результате до земной поверхности никогда не доходят лучи с длиной волны меньше 286 нм. Именно поэтому ультрафиолетовые датчики не реагируют на солнечное излучение, которое является мощным источником оптических помех [3] [4] .

8 стр., 3564 слов

Особенности применения воздушно-механической пены для тушения пожаров

... подачи пенообразователя. Виды воздушно механических пен Воздушно-механическая пена образуется в результате интенсивного механического перемешивания водного раствора пенообразователя с воздухом. Для получения пены применяются пенообразователи ПО-1 ... воздействия на очаг пожара выделяют: поверхностные - дренчерные. Защита всей расчетной площади; установки для защиты резервуаров с горючими жидкостями; ...

В зависимости от типа материала детектора, чувствительность извещателя будет разной для различных участков ультрафиолетового диапазона. Детекторы, использующие соединения никеля будут обнаруживать пламя в ультрафиолетовом диапазоне, если при горении выделяются пары воды.

Пожарные извещатели пламени с детекторами на основе молибдена имеют спектральный диапазон чувствительности 1850…2650 ангстрем. Данные извещатели подходят для обнаружения горения серы [5] .


1.3. Инфракрасный (ИК)

Реагирут на инфракрасную часть спектра пламени. Реагирует на горение веществ, содержащих углерод. Способен работать в запыленных помещениях, так как излучение в инфракрасной части спектра слабо поглощается пылью.

В извещателях пламени инфракрасного диапазона в качестве приемников излучения наибольшее применение получили фоторезисторы и фотодиоды. Анализ спектральных характеристик излучения пламени различных горючих материалов и помех показал, что для обеспечения устойчивости извещателей к световым воздействиям максимум спектральной чувствительности ИК фотопреобразователей должен находиться в области 2,7 и 4,3 мкм. Большинство же серийно выпускаемых ИК приемников излучения общего применения имеют спектральные характеристики в более коротком диапазоне ИК излучения, где в значительной степени проявляется влияние солнечного излучения и ламп накаливания. [6]

Извещатели, область чувствительности которых выбрана в ближней инфракрасной области спектра (например, с фотопреобразователями из Si, Ge), обладают более низкой помехоустойчивостью к воздействию солнечного излучения, чем извещатели с фотопреобразователями, спектр чувствительности которых смещен в более длинноволновую область спектра, например, PbS и PbSe. [7]

Пожарные извещатели, реагирующие на ИК излучение пламени очага загорания по принципу действия разделяются на три вида:


1.3.1. Реагирующие на эффект пульсации (мерцания) ИК излучения пламени

Для реализации извещателей, идентифицирующих пламя по эффекту пульсации, необходимо иметь приемник излучения, способный фиксировать низкочастотные колебания пламени в диапазоне от 2 до 20 Гц. Популярность этого метода связана с тем, что в очагах пожара, как правило, имеют место низкочастотные колебания интенсивности излучения пламени, а изменение интенсивности излучения — необходимое условие для работы подавляющего большинства приемников излучения, будь то пироприемник, фотодиод или фоторезистор. Определенным преимуществом обладают пироприемники — широкополосные приемники ИК-излучения. Ведущие иностранные производители используют их практически во всех своих разработках. Однако всем использующим пироприемник датчикам пламени для надежной его идентификации требуется от единиц до десятков секунд. Специальные режимы настройки датчика способны обеспечить минимальное время срабатывания 25-30 мс, но ценой резкого снижения чувствительности и помехозащищенности. Наконец, частотный метод идентификации абсолютно непригоден для обнаружения тлеющих очагов пожара. [8]

7 стр., 3429 слов

Воздействие лазерного излучения

... обычно различают воздействие на гла­за и кожные покровы человека. 1.1 Воздействие лазерного излучения на органы зрения Основное вредное воздействие лазерное излучение оказывает на сетчатку глаза, причем хрусталик ... высокое быст­родействие пироприемников (до 1E- c), а также их чувствительность, большой динамический диапазон; широкий спектральный диапазон (0.4..10.6 мкм). Конструктивно чувстви ...

Метод обработки сигнала во временных интервалах (TDSA)

Метод TDSA предполагает анализ входного сигнала в реальном времени, требуя для распознавания пожара наличия мерцающего ИК излучения случайного характера. Использование данного метода позволяет извещателю игнорировать закономерное прерывание излучения «чёрного тела» (имеющее место в зонах, где движущиеся конвейеры и горячие объекты, находящиеся в непосредственной близости друг от друга, создают регулярно прерываемый ИК сигнал), и наблюдать за появлением менее закономерно изменяющегося сигнала. Тем не менее, извещатель в большей степени склонен к ложным срабатываниям в присутствии регулярно прерываемого сигнала, вследствие того, что хаотичный ИК сигнал, появляющийся одновременно с регулярным сигналом, будет являться инициатором этих ложных сигналов пожара. [9]


1.3.2. Реагирующие на постоянную составляющую пламени

1.3.3. Реагирующие на информационное излучение в различных диапазонах спектра ИК излучения

1.4. Многодиапазонные

1.5. Спектры источников излучения

[Электронный ресурс]//URL: https://drprom.ru/referat/optoelektronnyie-datchiki-plameni/

1.5.1. Солнечное излучение

Солнце излучает в большом объёме. Значительная часть излучения задерживается атмосферой. На рисунке хорошо видна «холодная» зона в области поглощения СО 2 . Использование для обнаружения пламени таких зон позволяет создавать извещатели, у которых будут отсутствовать ложные срабатывания от солнечного света.


1.5.2. ИК излучение

Селективные полосы излучения продуктов горения имеют в инфракрасном диапазоне следующие поддиапазоны: Н 2 О 2,5…2,9 мкм и СО2 4,0…4,4 мкм.[10]

Примечания

Данный реферат составлен на основе .