Плазменная сварка

Используется для сварки нержавеющих сталей, вольфрама, молибдена, сплавов никеля в авиационной промышленности, приборостюроении. Плазменная сварка характеризуется глубоким проплавюлением металла, что позволяет сваривать металлические листы толщиной до 9 мм. Выполняется в любом положении в пространстве.

В плазменной сварке для получении плазмы применяются плазменные горелки, состоящие из вольфрамового электрода, труб водяного охлаждения, подачи газа, сопла плазмы.

Температура в плазменной дуге достигает 30 000°С, в отличие от плазмы электрической дуги, температура которой — 5000-7000°С.

В плазмотроне в зону плазменной дуги подводится газ, образующий плазму. Газ нагревается дугой и ионизируется. Благодаря тепловому расширению газа, увеличивающему объем газа в 50-100 раз, происходит скоростное истекание его из канала сопла плазмотрона. Кинетическая энергия ионизированных частиц газа и тепловая энергия является основными источником энергии для сварки.

В плазмотроне используется в основном горелки постоянного тока.

В плазменной сварке возможны следующие разновидности:

сварка плазменной дугой, горящей между не плавящимся электродом и изделием,

сварка плазменной струей, горящей между не плавящимся электродом и соплом плазмотрона. Плазма выдувается газовой струей.

В качестве плазмообразующего газа используются: азот, кислород, аргон, воздух.

Разновидности

В зависимости от величины тока в плазме различают следующие виды плазменной сварки: микроплазменная (0,1-25 А); на средних токах (50-150А); на больших токах (ток более 150А).

Микроплазменная сварка позволяет избежать прожогов в металле. Сварка на больших токах происходит с полным проплавлением металла. При этом образуется отверстие, разрезание деталей с последующей заваркой.

Преимущества

Сварка плазменной дугой в отличие от дуговой электрической имеет следующие преимущества:

  • в плазменной сварке процесс сварки менее чувствителен к изменению длины электрической дуги;
  • процесс протекает с большей температурой;
  • имеет меньший диаметр дуги, которая имеет цилиндрическую форму;
  • дуга горит на малых токах — от 0,2 до 30 А.

Недостатки

  • часть энергии при плазменной сварке рассеивается в окружающее пространство и на нагрев электродов;
  • необходимость подвода плазмообразующего газа и воды.

Оборудование

4 стр., 1822 слов

Общая схема плазменной сварки

... сварочного тока, длины дуги и расхода плазмообразующего газа. Было разработано несколько технологических схем процесса плазменной сварки. Для сварки тонколистовых материалов применены малоамперные дуги, горящие в импульсном ... механизированные установки, а также технологии для плазменной резки алюминия, меди, латуни и нержавеющей стали. Последующие работы привели к созданию процессов, в которых ...

В плазменной сварке используются отечественные аппараты «ПЛАЗАР» (универсальный , мобильный плазменный аппарат), зарубежного производства FoxWeld PLASMA 33 Multi, BLUE WELD BEST PLASMA 60 HF и др.

Плазменная резка — вид плазменной обработки материалов, при котором в качестве режущего инструмента вместо резца используется струя плазмы.

Между электродом и соплом аппарата, или между электродом и разрезаемым металлом зажигается электрическая дуга. В сопло подаётся газ под давлением в несколько атмосфер, превращаемый электрической дугой в струю плазмы с температурой от 5000 до 30000 градусов и скоростью от 500 до 1500 м/с. Толщина разрезаемого металла может доходить до 200 мм. Первоначальное зажигание дуги осуществляется высоковольтным импульсом или коротким замыканиемю между форсункой и разрезаемым металлом. Форсунки охлаждаются потоком газа (воздушное охлаждение) или жидкостным охлаждением. Воздушные форсунки как правило надежнее, форсунки с жидкостным охлаждением используются в установках большой мощности и дают лучшее качество обработки.

Используемые для получения плазменной струи газы делятся на активные (кислород, воздух) и неактивные (азот, аргон, водород, водяной пар).

Активные газы в основном используются для резки чёрных металлов, а неактивные — цветных металлов и сплавов.

Преимущества плазменной резки:

  • обрабатываются любые металлы — черные, цветные, тугоплавкие сплавы и т. д.
  • скорость резания малых и средних толщин в несколько раз выше скорости газопламенной резки
  • небольшой и локальный нагрев разрезаемой заготовки, исключающий ее тепловую деформацию
  • высокая чистота и качество поверхности разреза
  • безопасность процесса (нет необходимости в баллонах с сжатым кислородом, горючим газом и т. д.)
  • возможна сложная фигурная вырезка
  • отсутствие ограничений по геометрической форме.

Плазменное напыление — процесс нанесения покрытия на поверхность изделия с помощью плазменной струи.

Сущность плазменного напыления заключается в том, что в высокотемпературную плазменную струю подаётся распыляемый материал, который нагревается, плавится и в виде двухфазного потока направляется на подложку. При ударе и деформации происходит взаимодействие частиц с поверхностью основы или напыляемым материалом и формирование покрытия. Плазменное напыление является одним из вариантов газотермического напыления.

Дуга свободна, если её развитие в пространстве не ограничено. Сжатая дуга помещается в узких каналах и обдувается струями газов или паров. Особенно мощные плазменные потоки у сжатой дуги. Сжатые дуги являются основой дугового плазмотрона — устройства для получения «низкотемпературной» плазмы. Физические исследования по созданию плазмотронов начались в начале ХХ века, а наиболее широкое исследование в конце 50-х, начале 60-х годов. В 1922 году Жердьен и Лотц получили сжатую дугу, стабилизированную водяным вихрем. В 1951 году в дуговом разряде, стабилизированном водяным вихрем, Бурхорну, Меккеру и Петерсу удалось получить температуру 50000°С, а в 1954 году на установке для получения сжатой дуги при высоком давлении паров воды Петерс получил сверхзвуковую скорость истечения плазменной струи — 6500м/с при температуре 8000К (1,6 М).

4 стр., 1932 слов

Технология напыления функционально-градиентных покрытий

... материала порошка, его свойств, размеров и формы деталей, толщины покрытия в пределах 50—200 мм. [1] 3.3 Плазменное напыление Плазменным напылением ... реферате рассмотрим сущность газогермических и вакуумных методов получения покрытий. 1. Функционально-градиентные покрытия Функционально-градиентные материалы - это новый класс материалов, ... ∙с-1. Попадая в струю, частицы порошка расплавляются или ...

В середине пятидесятых фирма Джианини публикует работы по устройству газового плазмотрона с кольцевым анодом.

В конце 50-х были созданы первые дуговые плазмотроны, а в начале 60-х годов — плазменные распылители. Из-за своей универсальности (температура плазменной струи обеспечивала плавление любых материалов) плазменные распылители заняли значительное место в ГТН, потеснив газопламенные методы. плазменный сварка напыление нержавеющий

Плазменная обработка позволила упрочнять поверхность конструкционных материалов. Плазменное напыление — создавать новые композиционные материалы и покрытия, которые не могут быть получены другими методами. Особенно широко плазменное напыление используется для нанесения порошков оксидов различных металлов.

Методы и история их создания

Атмосферное плазменное напыление англ. Atmospheric plasma spraying (APS) запатентован Giannini and Ducati в 1960 г., Gage в 1962 г. Базируется на применении Плазменного генератора Гердиена, изобретенного в 1922 г.

Вакуумное плазменное напыление англ. Vacuum plasma spraying (VPS), или Low-Pressure Plasma Spraying(LPPS) Приоритет изобретение отдают сотруднику фирмы Plasmadyne Мюльбергеру, в 1973 г.

Плазменное напыление в контролируемой атмосфере англ. Controlled-atmosphere plasma spraying (CAPS) Mash, Stetson и Hauck в 1961 г. первыми сообщили о напылении плазмой в камере, заполненной инертным газом. Эту технику назвали Inert Plasma Spraying (IPS).

Другой способ, позволяющий изолировать плазменную струю от окружающей атмосферы, был изобретен Okada и Maruo в 1968 г. и назывался Shrouded Plasma Spraying (SPS).

В этом способе защитный газ подавался из сопла, присоединенного к аноду плазмотрона, близко к подложке, что позволяло удалять плазмообразующий газ.

Стадии

Плазменный процесс состоит из трех основных стадий:

  • генерация плазменной струи;
  • ввод распыляемого материала в плазменную струю, его нагрев и ускорение;
  • взаимодействие плазменной струи и расплавленных частиц с основанием.

Возможности

Плазменным напылением наносятся износостойкие, антифрикционные, жаростойкие, коррозионностойкие и другие покрытия.

Напыление с помощью низкотемпературной плазмы позволяет:

  • наносить покрытия на листовые материалы, на конструкции больших размеров, изделий сложной формы;
  • покрывать изделия из самых разнообразных материалов, включая материалы, не терпящие термообработки в печи (стекло, фарфор, дерево, ткань);
  • обеспечить равномерное покрытие как на большой площади, так и на ограниченных участках больших изделий;
  • значительно увеличить размеры детали (восстановление и ремонт изношенных деталей).

    Этим методом можно наносить слои толщиной в несколько миллиметров;

  • легко механизировать и автоматизировать процесс напыления;
  • использовать различные материалы: металлы, сплавы, окислы, карбиды, нитриды, бориды, пластмассы и их различные комбинации;
  • наносить их в несколько слоев, получая покрытия со специальными характеристиками;
  • практически избежать деформации основы, на которую производится напыление;
  • обеспечить высокую производительность нанесения покрытия при относительно небольшой трудоёмкости;
  • улучшить качество покрытий. Они получаются более равномерными, стабильными, высокой плотности и с хорошим сцеплением с поверхностью детали.

Впервые твердосплавные пластины с покрытием из карбидов титана (TiC) появились на мировом рынке в 1969 г. К настоящему времени более 50% всех твердосплавных пластин, выпускаемых западными фирмами, имеют покрытия на основе таких соединений, как карбид титана TiC, нитрид титана TiN, оксид алюминия Al2O3 и др. В отечественной промышленности широкое применение нашли установки плазменного напыления типа «Булат», «УВМ», «Пуск», позволяющие наносить на инструмент одно- и многослойные покрытия.[1]

11 стр., 5057 слов

Ионно-плазменное напыление

... плазменное напыление", характеристика процесса напыления, расходные материалы и оборудование, а так же применение разработанных покрытий. 1. Ионно-плазменное напыление Одним из методов получения покрытий многомикронной толщины является вакуумное ионно-плазменное напыление. Способ вакуумного напыления ... - плазменного напыления являются катоды из напыляемых металлов. Как правило, это металлы высокой ...

Литература

[Электронный ресурс]//URL: https://drprom.ru/referat/plazmennaya-svarka/

1. Николаев Г. А. Сварка в машиностроении: Справочник в 4-х т. — М.: Машиностроение, 1978 (1-4 т).

2. «Теоретические основы технологии плазменного напыления» учеб. пособие, 2003 Пузряков А.Ф.

3. Достанко А.П., Грушецкий С.В., Киселевский Л.И., Пикуль М.И., Ширипов В.Я. Плазменная металлизация в вакууме. — Мн.: Наука и техника, 1983. — 279 с.