оптическими обычно называют приборы, работающие в видимом свете
При первичной оценке качества прибора рассматриваются лишь основные его характеристики:
- светосила — способность концентрировать излучение;
- разрешающая сила — способность различать соседние детали изображения;
- увеличение — соотношение размеров предмета и его изображения.
- Для многих приборов определяющей характеристикой оказывается поле зрения — угол, под которым из центра прибора видны крайние точки предмета.
Разрешающая сила (способность)
линейным или угловым пределом разрешения
Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.
Увеличение.
m = h/H .
Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.
видимое увеличение М
Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.
Линза – оптически прозрачное тело, ограниченное двумя сферическими поверхностями.
Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.
собирающими
Виды линз:
- вогнутые:
- двояковогнутые (4)
- плосковогнутые (5)
- выпукло-вогнутые (6)
Основные обозначения в линзе:
Оптические приборы
... с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать ...
главной оптической осью линзы
оптическим центром линзы
Оптический центр линзы, Главная оптическая ось
побочными оптическими осями
главным фокусом линзы.
Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F’, которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.
Фокальная плоскость
фокусным расстоянием
Преломление параллельного пучка лучей в собирающей линзе.
Преломление параллельного пучка лучей в рассеивающей линзе.
Точки O 1 и O2 – центры сферических поверхностей, O1 O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F’ – побочный фокус, OF’ – побочная оптическая ось, Ф – фокальная плоскость.
На чертежах тонкие линзы изображают в виде отрезка со стрелками:
собирающая: рассеивающая:
Основное свойство линз
Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:
-
Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.
-
Луч, проходящий через оптический центр линзы не преломляется.
-
Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.
Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:
оптической силой линзы
диоптрия (дптр)
Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.
Величины d и f также подчиняются определенному правилу знаков:
- d >
- 0 и f >
- 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
- d <
- 0 и f <
- 0 – для мнимых источников и изображений.
[Электронный ресурс]//URL: https://drprom.ru/referat/primenenie-linz-v-jizni/
Оптические инструменты, вооружающие глаз
... объектов. 1.2. Оптические инструменты. 1.2.1. Лупа Одним из простейших оптических приборов является лупа – собирающая линза, предназначенная для рассматривания увеличенных изображений малых объектов. Линзу подносят к самому глазу, а предмет помещают между линзой и главным ...
аберрациями
Сферическая аберрация, Хроматическая аберрация
В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.
Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.
При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик — светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру).
У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.
Микроскоп, лупа, увеличительное стекло.
Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом.
Из оптической схемы можно определить размер увеличенного изображения.
Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения: M = tgb /tga = (H/f)/(H/v) = v/f, где f — фокусное расстояние линзы, v — расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.
Телескоп.
Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы.
Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на схеме), собираются в заднем фокусе первой линзы (объектива).
История возникновения производства линз
... расстояние отрицательно. 7. Масштаб изображения Масштабом изображения ( ) называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где — расстояние от линзы до изображения; — расстояние от линзы до предмета. ... описан, возможно, первый случай применения линз для коррекции зрения — известно, что Нерон смотрел ...
Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f’ (или F/f).
Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.
Бинокль.
Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего — Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45°), ориентированные навстречу прямоугольными гранями.
Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, — его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8*40 или 7*50.
Оптический прицел.
В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.
Дальномер.
Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели).
(Сборка объективов насыпной конструкции. Расчет автоколлимационных точек)
... оптической осью системы. В зависимости от точности центрирования линз различают следующие основные типы объективов. 1. Объективы «насыпной» конструкции, в которых линзы в оправах при сборке центрируют ... качества изображения); надежную и длительную работу объектива в реальных условиях эксплуатации; выпуск необходимого количества объективов в установленные сроки. Процесс сборки объектива имеет ...
Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм.
МОНОКУЛЯРНЫЙ ДАЛЬНОМЕР. A — прямоугольная призма; B — пентапризмы; C — линзовые объективы; D — окуляр; E — глаз; P1 и P2 -неподвижные призмы; P3 — подвижная призма; I 1 и I 2 — изображения половин поля зрения
В схеме монокулярного дальномера, показанной на рисунке, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.
Осветительные и проекционные приборы. Прожекторы.
В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.
Диаскоп.
В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране. В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.
Фотографический объектив и его характеристики
... параметрами (характеристиками) объектива являются: фокусное расстояние, угловое поле изображения, относительное отверстие и разрешающая сила. Фокусное расстояние ( f ') определяет размер даваемого объективом изображения, т. е. его масштаб ... топлёнка; 5 — линза; б — пента-призма; 7 — окуляр; 8 — глаз фотографа* Часто вместо плоско-выпуклой линзы применяют линзу Френеля, содержащую несколько коль ...
СХЕМА ДИАСКОПА. A — диапозитив; B — линзовый конденсор; C — линзы проекционного объектива; D — экран; S — источник света
Спектральные приборы.
Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.
Спектрометр.
В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.
Спектрограф.
Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм).
В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.
Фотоаппарат
Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.
В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F. Это приводит к увеличению глубины резкости.
Объектив современной фотокамеры состоит из нескольких линз, объединенных в оптические системы (например, оптическая схема Тессар).
Число линз в объективах самых простых фотокамер — от одной до трех, а в современных дорогих фотоаппаратах их бывает до десяти или даже восемнадцати.
Оптическая схема Тессар
Оптических систем в объективе может быть от двух до пяти. Практически все оптические схемы устроены и работают одинаково – они фокусируют проходящие через линзы лучи света на светочувствительной матрице.
Электрические схемы
... ознакомиться с перечнем элементов электрических схем. Схема–конструкторскийдокумент,накоторомпоказаныввидеусловныхизображенийилиобо- значений составные части изделия и связи междуними. [Справочник по электроснабжению и электрооборудованию: в 2 т./ ... элемента с его правой стороны или над ним. При изображении на схеме элемента разнесенным способом его позиционное обозначение проставляют около каждой ...
Только от объектива зависит качество изображения на снимке, будет ли фотография резкой, не исказятся ли на снимке формы и линии, хорошо ли она передаст цвета — все это зависит от свойств объектива, поэтому объектив и является одним из самых важных элементов современной фотокамеры.
Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы. Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.
В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.
Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ. Склейку объективов можно встретить намного чаще, нежели металлические оправы.
Проекционный аппарат