Применение вихревых токов в промышленности реферат скачать

Токи Фуко (в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

В отличие от электрического тока в проводах, текущего по точно определённым путям, вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Эти контуры тока взаимодействуют с породившим их магнитным потоком. Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи. вихревый ток проводник индукция

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть, замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для подвижных частей гальванометров, сейсмографов и др. Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления. С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

17 стр., 8112 слов

Установка магнитного надвеса

... температурах магнитный подшипник обладает более продолжительным сроком службы, чем обычный подшипник. Нужно подчеркнуть, что основные достоинства магнитного подшипника ‒ ... которой невозможно устойчивое равновесие тела в силовом поле, в котором сила и расстояние связанны законом, ... сил взаимодействия магнитного поля и проводника с током или сил взаимодействия двух проводников с токами. 1.2 ...

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Проведем следующий эксперимент:

Берем постоянный магнит (1) в руки и быстро водим (3) его вдоль поверхности листа меди/алюминия (2), ориентируя к последнему один из полюсов магнита, так как показано на Рис.1.

Можно отчетливо ощутить возникающее сопротивление такому быстрому движению. Теперь пустим магнит в свободное скольжение по поверхности наклоненного толстого листа меди/алюминия. Можно заметить, что скольжение магнита сильно тормозится, и даже возникает впечатление, что магнит сильнее прижимается к листу проводника. Аналогичный эксперимент — постоянный магнит бросают в вертикальную трубу из меди или алюминия. Стандартное объяснение — движение магнита тормозят вихревые токи Фуко. Но умалчивается что суммарная масса электронов вовлеченных в вихревое движение во много раз меньше массы постоянного магнита. И потом, что мешает смещаться электронному вихрю вслед за скользящим магнитом? Логично предположить что «свободные» электроны, в электрическом проводнике, фактически не являются свободными. Существует некая сетка электропроводных мостиков меж атомами проводника, по которым движутся электроны. Эта-та сетка и привязывает множество вихрей токов Фуко к кристаллической решетке. Но, эксперимент с заменой сплошного листа проводника на опилки, показывает, что торможение движения постоянного магнита становится незаметным. Т.е. электропроводные «мостики» меж атомами проводника это не локальное явление. «Мостики» проявляют себя в макро-масштабах.

Но продолжим эксперимент с тем, что имеется у нас в руках — быстро водим (3) магнитом (1) вдоль поверхности листа меди/алюминия (2), ориентируя к последнему уже его оба полюса, так как показано на Рис.2.

При этом ощущается тоже сопротивление быстрому движению, что и в первом эксперименте.

Но вот если повернем магнит (1) и будем его быстро двигать (3), перпендикулярно прямой меж полюсами магнита (как показано на Рис.3), то мы уже не обнаружим сопротивление его быстрому движению.

Куда же делись токи Фуко? Никуда они не делись, просто их плоскость стала пересекать плоскость нашего листа меди/алюминия, что вызвало появление на поверхности листа электрического заряда как в банальном униполярном генераторе электрического тока. В нашем же случае электрическая цепь оказалась не замкнута, «вихревой» контур разомкнут… в макро-масштабах. Что опять наводит на мысль существования электропроводных «мостиков» меж атомами проводника в макро-масштабах.

4 стр., 1954 слов

Электрический ток в проводниках и полупроводниках

... сверхпроводящем проводнике электрический ток прекращается. Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении ... его среднему значению на этом интервале температур. У чистых металлов . При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в ...

Схематическое изображение возникающих вихревых токов в проводнике при изменении пронизывающего его потока вектора магнитной индукции . I — изменяющийся ток обмотки сердечника, вызывающий переменное во времени магнитное поле.

Таким образом, токи Фуко являются индукционными токами, они образуются либо вследствие изменения во времени магнитного поля, в котором находится проводник, либо в результате движения проводящего тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Токи Фуко замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Направления вихревых токов определяются правилом Ленца. Согласно правилу Ленца, магнитное поле вихревого тока направленно так, чтобы противодействовать изменению магнитного потока, индуцирующему эти вихревые токи.

В соответствии с законом Джоуля-Ленца, токи Фуко нагревают проводники, в которых они возникли, что приводит к потерям энергии. Для их уменьшения и снижения эффекта «вытеснения» магнитного поля магнитопроводы изготавливают не из сплошного куска, а из изолированных друг от друга отдельных пластин, заменяют ферромагнитные материалы магнитодиэлектриками и др. Явление нагревания проводников токами Фуко используется для плавки и поверхностной закалки металлов, для обезгаживания элементов арматуры вакуумных приборов и т.д.

Вихревые токи возникают и в самом проводнике, по которому течет переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному току, а у оси проводника — навстречу току. В результате внутри проводника ток уменьшается, а на поверхности увеличивается (ток «вытесняется» на поверхность проводника).

Это явление называется электрическим скин-эффектом. Взаимодействие вихревых токов с основным магнитным потоком приводит проводящее тело в движение. Это явление используется в измерительной технике, в машинах переменного тока и т.д.

Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи — токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля-Ленца, большое количество тепла.

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах, для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток).

19 стр., 9498 слов

Аппараты для воздействия на водонефтяные эмульсии магнитным полем

... металлоемкости, связанный с необходимостью разрушения стойких эмульсий, имеет место в системах подготовки нефти. 1. Причины образования и свойства нефтяных эмульсий Поскольку водонефтяная эмульсия представляет ... фазы по П.А. Ребиндеру [6] заключается в том, что вначале в поле сдвиговых деформаций происходит вытягивание водной глобулы (она приобретает цилиндрическую форму), которое сопровождается ...

Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск. В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона. Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение в электрометаллургии при индукционной плавке металлов и поверхностной закалке токами высокой частоты. Металл помещают в переменное магнитное поле, создаваемое током частотой 500 — 2000 Гц. В результате индуктивного разогрева металл плавится, а тигель, в котором он находится, при этом остается холодным. Например, при подведенной мощности 600 кВт тонна металла плавится за 40-50 минут.

Литература

[Электронный ресурс]//URL: https://drprom.ru/referat/primenenie-vihrevyih-tokov-v-promyishlennostiskachat/

1. Сивухин Д. В.: Общий курс физики, том 3.

2. Савельев И. В.: Курс общей физики, том 2

3. Неразрушающий контроль: справочник.