Синхронно с разверткой электронного зонда осуществляется развертка луча большого кинескопа. Рассмотрим работу растрового электронного микроскопа в режиме индикации тока вторичных электронов. В этом случае величина вторичного электронного тока определяет глубину модуляции яркости на экране кинескопа. Растровый электронный микроскоп такого типа позволяет получить увеличение 100 ё 100 000 при достаточной контрастности изображения. Разрешающая способность растровых электронных микроскопов определяется диаметром электронного зонда и в случае получения изображения в электронных лучах составляет ~ 300А° . Растровые электронные микроскопы позволяют изучать, например, так называемые p-n переходы в полупроводниках.
Из электронных микроскопов упомянем зеркальный электронный микроскоп, основной особенностью которого является чувствительность к микроскопическим электрическим и магнитным полям на отражающем массивном объекте. При этом достигается разрешение деталей порядка 1000А° и увеличение почти в 2000*. Работа такого микроскопа основана на действии микроскопических электрических и магнитных полей на электронный поток. Зеркальный электронный микроскоп позволяет изучать, например, доменную структуру ферромагнитных материалов, структуру сегнетоэлектриков.
В теневом электронном микроскопе, так же как и в растровом, формируется электронный зонд, однако положение его остается неизменным. Электронные лучи зонда служат для получения увеличенного теневого изображения объекта, помещенного в непосредственной близости от зонда. Образование изображения обусловлено рассеянием и поглощением электронов различными участками объекта. Следует отметить, что интенсивность конечного изображения в теневом электронном микроскопе незначительна, поэтому обычно в них используются усилители света типа электронно-оптических преобразователей.
Важной разновидностью электронных микроскопов растрового типа является микрорентгеноспектральный анализатор. Прибор основан на возбуждении так называемого характеристического рентгеновского излучения атомов малого участка поверхности — образца с помощью тонкого высокоскоростного электронного зонда. Электронный зонд с помощью системы развертки обегает исследуемую поверхность. При торможении электронов на поверхности возникает наряду с так называемым тормозным излучением характеристическое рентгеновское излучение, свойства которого существенно определяются строением электронных оболочек в атомах вещества. Это излучение обязано своим возникновением энергетическим переходом между глубокими энергетическими уровнями атомов.
Тиристорные преобразователи частоты: назначение, типы
... электромагнитных помех -- EMC-фильтр. 1.2 Устройство и назначение тиристорных преобразователей частоты Электронный преобразователь частоты состоит из схем, в состав которых входит ... с фазным ротором, работающий в режиме генератора-преобразователя, и преобразователи электронного типа. Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного ...
Возникающее характеристическое излучение регистрируется с помощью рентгеноспектральной аппаратуры. Диаметр электронного зонда может изменяться от 360 до 0,5 мкм, а размер просматриваемой площадки представляет собой квадрат со стороной 360, 180, 90 или 45 мкм. В одном из приборов такого типа скорость анализа по одному химическому элементу соответствует движению зонда 8 или 96 мкм/мин (при механическом перемещении объекта).
Анализировать можно все элементы периодической системы элементов Менделеева, легких (от атомного номера 11 — натрия).минимальный объем вещества, поддающегося количественному анализу, составляет 0,1 мкг. С помощью микрорентгеновского анализатора получают распределение физико-химического состава вдоль исследуемой поверхности.
В СССР серийно выпускается (выпускался) микрорентгеновский анализатор типа МАР-1 (диаметр зонда около 1 мкм, наименьшая анализируемая площадь 1мкм 2).
Приборы такого вида находят применение в электронной промышленности и в других областях науки и техники.
Читатель, видимо, обратил внимание на тот факт, что в электронных микроскопах не достигается разрешающая способность, предсказываемая теорией. В чем же дело? Вспомним, что в формировании изображения в электронных микроскопах важную роль играют элементы электронной оптики, позволяющие осуществлять управление электронными пучками. Этим элементам — электронным линзам свойственны различного рода отклонения от идеального (требуемого расчетом) распределения электрических и магнитных полей. Положение здесь во многом аналогично ограничениям в оптической микроскопии, связанным с неточностью изготовления оптических линз, зеркал и других элементов. Кроме того, ряд трудностей связан с особенностями изготовления и работы источников электронных потоков (катодов), а также с проблемой создания потоков, в которых электроны мало отличаются по скоростям. В соответствии с этими фактами, действующими в реальных условиях, различают определённые виды искажений в электронных микроскопах, используя при этом терминологию, заимствованную из световой оптики.
Основными видами искажений электронных линз в просвечивающих микроскопах являются сферическая и хроматическая аберрации, а также дифракция и приосевой астигматизм. Не останавливаясь на происхождении различных видов искажений, связанных с нарушениями симметрии полей и взаимным расположением элементов электронной оптики, упомянем лишь о хроматической аберрации. Последний вид искажений аналогичен возникновению окрашенных изображений в простых биноклях и лупах. Использование спектрально чистого монохроматического света в оптике (вместо белого) устраняет этот вид искажений. Аналогично этому в электронной микроскопии используют по возможности пучки электронов, скорости которых отличаются мало (вспомним соотношение l =h/(m* v) для электрона!).
Этого достигают применением высокостабильных источников электрического питания.
Близким «родственником» электронного микроскопа является электронограф ѕ прибор, использующий явление дифракции электронов, той самой дифракции, которая в своё время подтвердила наличие волновых свойств у электронов и ставит в наши дни предел разрешения в электронном микроскопе. В случае электронов объектами, в которых может происходить дифракция на периодической структуре (аналогичной объёмной дифракционной решётке в оптике), служат кристаллические структуры. Известно, что в кристаллах атомы расположены в строгом геометрическом порядке на расстояниях порядка единиц ангстрем. Особенно правильно это расположение в так называемых монокристаллах. При взаимодействии электронов с такими структурами возникает рассеяние электронов в преимущественных направлениях в соответствии с предсказываемыми теорией соотношениями. Регистрируя рассеянные электроны (например, фотографируя их), можно получать информацию об атомной структуре вещества. В современных условиях электронография широко применяется при исследованиях не только твёрдых, но и жидких, газообразных тел. О виде получаемых электронограмм можно судить по фотографиям (см. рис.6).
Растровый электронный микроскоп
... длину волны, которая освещает объект исследования. Для этого можно использовать не фотоны, а, например, электроны, длина волны которых намного меньше. Электронные микроскопы — результат воплощения ... («детектор Эверхарта-Торнли»), ускорили развитие растрового электронного микроскопа. Этот детектор, крайне эффективный для сбора как вторичных, так и отражённых электронов, становится очень популярным и ...
В нашей стране и за рубежом применяются специализированные электронографы промышленного типа. Кроме того, в некоторых электронных микроскопах предусмотрена возможность работы в режиме электронографии.
Следует заметить, что с точки зрения физики получение электронограмм представляет собой процесс, во многом близкий процессу получению рентгенограмм в рентгеноструктурном анализе. Действительно, если в электрографии используется дифракция электронов, то в рентгеноструктурном анализе происходит дифракция рентгеновских лучей на атомных структурах. Естественно, что каждый из этих методов имеет свою область применения.
Особенности работы с электронным микроскопом
Остановимся кратко на основных приемах работы в электронной микроскопии. Естественно, что эти приемы своеобразны, учитывая сверхмалые размеры объектов, подлежащих исследованию. Так, например, в биологических исследованиях находят применения «сверхтонкие ножи» — микротомы, позволяющие получать срезы биологических объектов толщиной менее 1 мкм.
Главные особенности методики электронной микроскопии определяются необходимостью помещения объекта исследования внутрь колонны электронного микроскопа, т.е. в вакуум и обеспечения условий высокой чистоты, так как малейшие загрязнения могут существенно исказить результаты. Для просвечивающего электронного микроскопа объект приготовляется в виде тонких пленок, в качестве которых могут служить различного рода лаки, пленки металлов и полупроводников, ультратонкие срезы биологических препаратов. Кроме того, объектами исследования могут быть тонко измельченные (диспергированные) совокупности частиц. Обычно в просвечивающих микроскопах, работающих при напряжениях 50-100 кв, толщина объектов не может превышать 200 А° (для неорганических веществ) и 1000 А° (для органических).
Биологические объекты в большинстве случаев приходится контрастировать, т.е. «окрашивать» (солями тяжелых металлов), оттенять напылением металлов (платиной, палладием и др.) и использовать ряд других приемов. Необходимость контрастирования вызвана тем, что большинство биологических объектов содержит атомы легких элементов (с малым атомным номером) — водород, углерод, азот, кислород, фосфор и т.д. в то же время толщина объектов, интересных для биологии и медицины, составляет величину порядка 50 А° . Без контрастирования при электронно-микроскопических исследованиях вирусов наблюдаются бесструктурные пятна, а отдельные молекулы нуклеиновых кислот вообще неразличимы. Использование методов контрастирования позволяет эффективно применить электронную микроскопию в биологических исследованиях и в том числе при исследованиях больших молекул (макромолекул).
Электронная микроскопия
... Принцип действия электронных микроскопов В настоящее время различают просвечивающую электронную микроскопию (ПЭМ) и растровую электронную микроскопию (РЭМ). Данные ... микросетка, на которой располагают исследуемый объект В ПЭМ объект исследования должен пропускать пучок ... пленке сплава четырех металлов Ti - Fe - Ni - Ag (б), электронов, прошедших сквозь тонкий слой каучука (в) вторичной электронной ...
В ряде случаев при исследовании, например, массивных объектов в технике широкое применение находит метод получения отпечатков, который заключается в изготовлении и последующем исследовании в микроскопе копий поверхностей объектов.
Используются как естественные отпечатки (тонкие слои окислов), так и искусственные, получаемые путем нанесения (напыления, осаждения) пленок кварца, углерода и других веществ. Наибольшее разрешение ( ~ 10 А° ) позволяют получить угольные реплики, которые находят широкое применение как в технике, так и в биологии.
При наблюдении электронно-микроскопическими методами влажных объектов ( в том числе живых клеток) используются вакуумно-изолированные газовые микрокамеры. Объекты исследования помещаются в электронных микроскопах на тончайшие пленки — подложки, которые крепятся на специальных сетках, изготовляемых обычно из меди электролитическим способом. Эти пленки должны удовлетворять целому ряду требований, поскольку относительно большая толщина их, а также сильное рассеяние ими электронов приводят к резкому ухудшению качества изображения объекта. Кроме того, материал таких пленок должен обладать хорошей теплопроводностью и высокой стойкостью к электронной бомбардировке.
Кстати, об электронной бомбардировке объекта исследования и ее последствиях. При попадании электронов на объект они выделяют энергию, примерно равную кинетической энергии их движения. В результате могут происходить местный разогрев и разрушение участков объекта.
Электронный микроскоп часто используется для микрохимического анализа исследуемого вещества согласно методу, предложенному М. И. Земляновой и Ю. М. Кушниром. По существу этот метод аналогичен методу микрохимического анализа с помощью оптического микроскопа. В данном случае электронный микроскоп используется в качестве устройства, способного обнаружить малые количества искомого вещества (по форме и структуре кристаллов и т.п.).
на поверхность водного раствора, в котором предполагается наличие искомых ионов, наносится капля 1 — 1,5% раствора нитроклетчатки в амилацетате. Капля растекается по поверхности жидкости и образует коллодиевую пленку, на которую наносится капля реагента. Ионы реагента проникают (диффундируют) сквозь пленку и, взаимодействуя с раствором, образуют на поверхности пленки кристаллы, которые содержат ионы, подлежащие обнаружению. После специальной очистки кусочек пленки с кристалликами помещается в электронный микроскоп, и на основе изучения этих кристалликов оказывается возможным дать ответ о наличии искомых ионов, а в ряде случаев — и об их концентрации. Такой метод микрохимического анализа характеризуется высокой чувствительностью (на 2 — 3 порядка большей по сравнению с другими способами).
Устройство микроскопов
... свое развитие, закладывая фундамент современной микроскопии. Быстрое распространение и совершенствование микроскопов началось после того, как Галилей ... в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в ... Оптический прибор, состоящий из датчика изображения, оптической линзы, механизма освещения, системы управления передачей изображения, ...
Например, ионы марганца могут быть обнаружены в растворе с концентрацией не ниже 10 -11 нормального раствора при содержании иона 10 -11 г (по данным А. М. Решетникова).
Пути преодоления дифракционного предела электронной микроскопии.
К настоящему времени электронная микроскопия достигла больших успехов и нашла многочисленные применения. Однако в ряде случаев, о которых кратко было сказано выше, было бы чрезвычайно желательным добиться дальнейшего прогресса в электронной микроскопии. Это в первую очередь относится к проблеме достижения большей разрешающей способности.
На пути решения этой краеугольной задачи стоят чрезвычайно серьезные технические трудности, связанные с проблемами создания электронных линз, их взаимного расположения формирования односкоростных электронных потоков. Совокупность этих факторов приводит в конечном итоге к различного рода искажениям, играющим важную роль при больших увеличениях и приводящим к тому, что практически достигаемое разрешение оказывается хуже предельного.
По мере приближения электронной микроскопии к своим предельным возможностям все труднее и труднее становится вносить в нее дальнейшие усовершенствования.
Самые последние достижения в электронной микроскопии основаны на применении новых высоковольтных (V = 100 кв) и сверхвысоковакуумных (вакуум 2e-10 мм рт. ст.) приборов. Высоковольтная электронная микроскопия, как показывает опыт, позволяет уменьшить хроматическую аберрацию электронных линз. В печати сообщается, например, о том, что с помощью нового японского микроскопа SMH-5 могут быть получены фотографии решеток с межплоскостным расстоянием ~ 1 А° . Сообщается также, что на новом электронном микроскопе с ускоряющим напряжением 750 кв получено разрешение, равное 3 А° .
Рассматриваются возможности применения в электронной микроскопии линз из сверхпроводящих сплавов (например, Hi ѕ Zn), которые позволят получить высокие оптические свойства электронных систем и исключительную стабильность полей. Ожидается, что использование специальных линз-фильтров позволит получить новые результаты в отражательной электронной микроскопии. При использовании таких линз в просвечивающем электронном микроскопе удалось существенно улучшить их разрешающую способность.
В растровых электронных микроскопах просвечивающего типа к настоящему времени достигнута разрешающая способность в 100 А° . Новый эмиссионный микроскоп позволяет получать разрешения деталей с размерами от 120 (для фотоэмиссии) до 270 А° (для вторичной эмиссии).
Вызывает интерес сообщение о том, что голландская фирма Philips вносит ряд усовершенствований в микроскоп типа EM-300, которые позволят довести практическую разрешающую способность до теоретического предела (!).
Правда, о существе этих усовершенствований пока не сообщается.