Столбчатая диаграмма

Диаграмма — (изображение, рисунок, чертёж) — графическое представление данных, позволяющее быстро оценить соотношение нескольких величин. Представляет собой геометрическое символьное изображение информации с применением различных приёмов техники визуализации.

Иногда для оформления диаграмм используется трёхмерная визуализация, спроецированная на плоскость, что придаёт диаграмме отличительные черты или позволяет иметь общее представление об области, в которой она применяется. Например: финансовая диаграмма, связанная с денежными суммами, может представлять собой количество купюр в пачке или монет в стопке; диаграмма сравнения количества подвижного состава — различную длину изображённых поездов и т. д. Благодаря своей наглядности и удобству использования, диаграммы часто используются не только в повседневной работе бухгалтеров, логистов и других служащих, но и при подготовке материалов презентаций для клиентов и менеджеров различных организаций.

В различных процессорах графопостроения (графических программах) и электронных таблицах при изменении данных, на основе которых построена диаграмма, она будет автоматически перестроена с учётом внесённых изменений в таблицу исходных данных. Это позволяет быстро сравнивать различные показатели, статистические данные и т. д. — можно вводить новые данные и сразу видеть изменения диаграммы [1].

1.История возникновения диаграмм.

Во всех диаграммах используется функциональная зависимость как минимум двух типов данных. Соответственно, первыми диаграммами были обыкновенные графики функций, в которых допустимые значения аргумента соответствуют значениям функций.

Идеи функциональной зависимости использовались в древности. Она обнаруживается уже в первых математически выраженных соотношениях между величинами, а также в первых правилах действий над числами, в первых формулах для нахождения площади и объёма геометрических фигур. Вавилонские учёные, таким образом, несознательно установили, что площадь круга является функцией от его радиуса 4—5 тыс. лет назад[11].

Астрономические таблицы вавилонян, древних греков и индийцев — яркий пример табличного задания функции, а таблицы, соответственно, являются хранилищем данных для диаграмм.

В XVII веке французские учёные Франсуа Виет и Рене Декарт заложили основы понятия функции и разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание. Также геометрические работы Декарта и Пьера Ферма проявили отчётливое представление переменной величины и прямоугольной системы координат — вспомогательных элементов всех современных диаграмм.

12 стр., 5825 слов

Модернизация структуры базы данных на основе анализа требований предприятия

... диаграмм средствами программного обеспечения для работы с базами данных. Данный метод помогает получить начальные сведения в графическом виде, которые улучшат представления ... модернизации, будут вам доступны. К примеру, файл SQL скриптов базы данных. В рамках работы над данным проектом нам доступна база данных ... на более мелкие структуры, включающиеся в себя ... велико. Различные пользователи берут на ...

Первые статистические графики начал строить английский экономист У. Плейфер в работе «Коммерческий и политический атлас» 1786 года. Это произведение послужило толчком для развития графических методов в общественных науках [1].

2.Основные типы диаграмм

Диаграммы в основном состоят из геометрических объектов (точек, линий, фигур различной формы и цвета) и вспомогательных элементов (осей координат, условных обозначений, заголовков и т. п.).

Также диаграммы делятся на плоскостные (двумерные) и пространственные (трёхмерные или объёмные).

Сравнение и сопоставление геометрических объектов на диаграммах может происходить по различным измерениям: по площади фигуры или её высоте, по местонахождению точек, по их густоте, по интенсивности цвета и т. д. Кроме того, данные могут быть представлены в прямоугольной или полярной системе координат [2].

Диаграммы-линии (графики)

Диаграммы-линии или графики — это тип диаграмм, на которых полученные данные изображаются в виде точек, соединённых прямыми линиями. Точки могут быть как видимыми, так и невидимыми (ломаные линии).

Также могут изображаться точки без линий (точечные диаграммы).

Для построения диаграмм-линий применяют прямоугольную систему координат. Обычно по оси абсцисс откладывается время (годы, месяцы и т. д.), а по оси ординат — размеры изображаемых явлений или процессов. На осях наносят масштабы.

Диаграммы-линии целесообразно применять тогда, когда число размеров (уровней) в ряду велико. Кроме того, такие диаграммы удобно использовать, если требуется изобразить характер или общую тенденцию развития явления или явлений. Линии удобны и при изображении нескольких динамических рядов для их сравнения, когда требуется сравнение темпов роста. На одной диаграмме такого типа не рекомендуется помещать более трёх-четырёх кривых. Их большое количество может усложнить чертёж, и линейная диаграмма может потерять наглядность.

Основной недостаток диаграмм-линий — равномерная шкала, позволяющая измерить и сравнить только абсолютные приросты или уменьшения показателей в течение периода исследований. Относительные изменения показателей искажаются при изображении их с равномерной вертикальной шкалой. Также в такой диаграмме может быть невозможным изображение рядов динамики с резкими скачками уровней, которые требуют уменьшения масштаба диаграммы, и показатели в ней динамики более «спокойного» объекта теряют свою точность. Вероятность присутствия в этих типах диаграмм резких изменений показателей возрастает с увеличением длительности периода времён на графике [2].

Диаграммы-области

Диаграммы-области — это тип диаграмм, схожий с линейными диаграммами способом построения кривых линий. Отличается от них тем, что область под каждым графиком заполняется индивидуальным цветом или оттенком. Преимущество данного метода в том, что он позволяет оценивать вклад каждого элемента в рассматриваемый процесс. Недостаток это типа диаграмм также схож с недостатком обычных линейных диаграмм — искажение относительных изменений показателей динамики с равномерной шкалой ординат [2].

Круговые (секторные) диаграммы

18 стр., 8633 слов

Оценка потребительских свойств и показателей качества товаров

... расчет коэффициентов весомости. 4. Рассмотреть комплексные показатели и осуществить их расчет. 5. Сформулировать выводы и предложения по проделанной работе. Объектом исследования представленной курсовой работы является качество товаров. Предметом исследования данной курсовой работы выступают оценка потребительских свойств и показателей ...

Достаточно распространённым способом графического изображения структуры статистических совокупностей является секторная диаграмма, так как идея целого очень наглядно выражается кругом, который представляет всю совокупность. Относительная величина каждого значения изображается в виде сектора круга, площадь которого соответствует вкладу этого значения в сумму значений. Этот вид графиков удобно использовать, когда нужно показать долю каждой величины в общем объёме. Сектора могут изображаться как в общем круге, так и отдельно, расположенными на небольшом удалении друг от друга [2].

Круговая диаграмма сохраняет наглядность только в том случае, если количество частей совокупности диаграммы небольшое. Если частей диаграммы слишком много, её применение неэффективно по причине несущественного различия сравниваемых структур. Недостаток

круговых диаграмм — малая ёмкость, невозможность отразить более широкий объём полезной информации [2].

Радиальные (сетчатые) диаграммы

В отличие от линейных диаграмм, в радиальных или сетчатых диаграммах более двух осей. По каждой из них производится отсчёт от начала координат, находящегося в центре. Для каждого типа полученных значений создаётся своя собственная ось, которая исходит из центра диаграммы. Радиальные диаграммы напоминают сетку или паутину, поэтому иногда их называют сетчатыми. Преимущество радиальных диаграмм в том, что они позволяют отображать одновременно несколько независимых величин, которые характеризуют общее состояние структуры статистических совокупностей. Если отсчёт производить не с центра круга, а с окружности, то такая диаграмма будет называться спиральной диаграммой [2].

Картодиаграммы

Картодиаграммы — это сочетания диаграмм с географическими картами или схемами. В качестве изобразительных знаков в картодиаграммах используются обычные диаграммы (гистограммы, круговые, линейные), которые размещаются на контурах географических карт или на схемах каких-либо объектов. Картодиаграммы дают возможность географически отразить более сложные статистико-географические построения, чем обычные типы диаграмм.

Недостатком картодиаграмм могут служить сложности в рисовании контуров карт, а также значительная разница в размерах областей географических карт и размеров диаграмм на них [2].

Биржевые диаграммы

Биржевые диаграммы отражают наборы данных из нескольких значений (например: цена открытия биржи, цена закрытия, максимальная и минимальная цена определённого временного интервала).

Применяются для отображения биржевых данных: котировок акций или валют, данных спроса и предложения [2].

Пространственные (трёхмерные) диаграммы

Пространственные, или трёхмерные диаграммы являются объёмными аналогами пяти основных типов двухмерных диаграмм: линейных, диаграмм-областей, гистограмм (столбчатых и линейных), круговых. Изображение в объёмном виде упрощает понимание информации. Такие диаграммы выглядят убедительнее. Сложность в создании трёхмерных диаграмм заключается в правильности отображения согласно теме диаграммы [2].

3.Гистограмма

Столбчатые и линейные диаграммы (гистограммы)

11 стр., 5476 слов

Измерение количественных признаков. Построение распределений. ...

... Данные измерений были занесены в Протокол №1 (см. Приложение, протокол №1). На основании этих данных по признакам роста стоя и роста сидя строились гистограммы распределений ... количественными признаками ... диаграмм ... метод статистической обработки данных (SPSS) сравнить результаты между собой у родственников и псевдородственников. Проанализировав данные, сделать выводы о том, как наследуются признаки ...

Классическими диаграммами являются столбчатые и линейные (полосовые) диаграммы. Также они называются гистограммами. Столбчатые диаграммы в основном используются для наглядного сравнения полученных статистических данных или для анализа их изменения за определённый промежуток времени. Построение столбчатой диаграммы заключается в изображении статистических данных в виде вертикальных прямоугольников или трёхмерных прямоугольных столбиков. Каждый столбик изображает величину уровня данного статистического ряда. Все сравниваемые показатели выражены одной единицей измерения, поэтому удаётся сравнить статистические показатели данного процесса.

Разновидностями столбчатых диаграмм являются линейные (полосовые) диаграммы. Они отличаются горизонтальным расположением столбиков. Столбчатые и линейные диаграммы взаимозаменяемы, рассматриваемые в них статистические показатели могут быть представлены как вертикальными, так и горизонтальными столбиками. В обоих случаях для изображения величины явления используется одно измерение каждого прямоугольника — высота или длина столбика. Поэтому и сфера применения этих двух диаграмм в основном одинакова.

Столбчатые диаграммы могут изображаться и группами (одновременно расположенными на одной горизонтальной оси с разной размерностью варьирующих признаков).

Образующие поверхности столбчатых и линейных диаграмм могут представлять собой не только прямоугольники, но также квадраты, треугольники, трапеции и т. д.

Гистограмму используют для изображения интервальных рядов. Для построения гистограммы по данным вариационного ряда с равными интервалами, как и для построения полигона, на оси абсцисс откладывают значения аргумента, а на оси ординат — значения частот или относительных частот. Далее строят прямоугольники, основаниями которых служат отрезки оси абсцисс, длины которых равны длинам интервалов, а высотами — отрезки, длины которых пропорциональны частотам или относительным частотам соответствующих интервалов.

В результате получают ступенчатую фигуру в виде сдвинутых друг к другу прямоугольников, площади которых пропорциональны частотам (или относительным частотам).

Если интервалы неравные, то на оси ординат следует откладывать в произвольно выбранном масштабе значения плотности распределения (абсолютной или относительной).

Таким образом, высоты прямоугольников, которые мы строим, должны равняться плотностям соответствующих интервалов.

При графическом изображении вариационного ряда с помощью гистограммы плотность изображается так, как если бы она оставалась постоянной внутри каждого интервала. На самом деле, как правило, это не так. Если построить распределение по частям интервалов, то можно убедиться в том, что плотность распределения на различных участках интервала не остается постоянной. Плотность, полученная ранее, предствляла лишь некоторую среднюю плотность. Итак, гистограмма изображает не фактическое изменение плотности распределения, а лишь средние плотности распределения на каждом интервале.

Если построена гистограмма интервального распределения, то полигон того же распределения можно получить, если соединить прямолинейными отрезками середины верхних оснований прямоугольников [3].

25 стр., 12149 слов

Диаграмма разброса

... подвержен один из параметров при определенных изменениях другого. Методика построения диаграммы разброса Собрать парные данные (X, Y), между которыми необходимо исследовать зависимость, используя контрольный ... 30 65 40 Парные данные упорядочены по х. Определяем средние значения и стандартные отклонения факторов: ; ; ; . Рисунок 5 «Диаграмма разброса». Обратно пропорциональная связь (отрицательная). ...

3.1 . История гистограмм

Слово ‘гистограмма’ происходит из Греции и состоит из слов ‘isto-s’ (ιστοs) (= ‘столб’, также это слово обозначает ‘паутину’, но это не существенно для нашего обсуждения) и ‘gram-ma’ (γραμμα) (= ‘нечто записанное’).

Следовательно, термин следует интерпретировать, как некую форму записи, состоящую из ‘столбиков’, т.е. продолговатых, вертикально расположенных фигур. Однако это слово изначально не использовалось в греческом языке.1 Термин ‘гистограмма’ был введен знаменитым статистиком Карлом Пирсоном (Karl Pearson)2 для обозначения «общей формы графического представления». В цитате Оксфордского словаря английского языка из «Philosophical Transactions of the Royal Society of London» Series A, Vol. CLXXXVI, (1895) p. 399″ упоминается, что «[Слово ‘гистограмма’ было] введено автором лекций по статистике как термин для обозначения общей формы графического представления, т.е. путем маркировки столбцов как областей частотности в соответствии с масштабом их базиса». Стинглер отождествляет упомянутые лекции с изданными в 1892 г. лекциями по статистической геометрии .

Приведенная цитата говорит о том, что гистограммы использовались задолго до того, как получили свое имя, но их дата рождения неясна. Столбчатые диаграммы (bar chart), т.е. гистограммы, в которых с каждым столбцом ассоциируется отдельный ‘базисный’ элемент, скорее всего, предшествуют гистограммам, и это помогает нам установить нижнюю временную границу их первого появления. Наиболее древняя столбчатая диаграмма появилась в книге шотландского политического экономиста Уильяма Плейфейра (William Playfair)3 «The Commercial and Political Atlas» (London 1786), в которой демонстрируются показатели импорта и экспорта Шотландии в семнадцать стран в 1781 г. [74].

Хотя Плейфейр относился к своему изобретению скептически, в последующие годы оно было принято многими, включая Флоренса Найтингейла (Florence Nightingale), который использовал их в 1859 г. для сравнения смертности в армии в мирное время со смертностью гражданского населения, и путем этого убедил правительство улучшить гигиенические условия в армии.

Из всего сказанного ясно, что гистограммы задумывались как визуальная поддержка статистической аппроксимации. Даже сегодня этот смысл доминирует в общем восприятии гистограмм. В словаре Вебстера гистограмма определяется как «столбчатая диаграмма частотного распределения, в которой ширина столбцов пропорциональна классам, на которые была разделена переменная, а высота столбцов пропорциональная частотам этих классов». Однако гистограммы исключительно полезны, даже если отсоединить их от канонического графического представления и рассматривать как чисто математические объекты, сохраняющие приближения распределений данных. Именно так мы относимся к ним в этой статье.

В последние два десятилетия гистограммы использовались в нескольких областях информатики. Кроме области баз данных, гистограммы играют важную роль, главным образом, в областях обработки изображений и машинного зрения. При заданном изображении (или видео) и визуальном пиксельном параметре, гистограмма фиксирует для каждого возможного значения параметра («класса» по Вебстеру) число пикселей, имеющихся у этого значения («частота» по Вебстеру).

15 стр., 7248 слов

По спецпроектированию: «Цвет и фактура в природе и дизайне интерьера»

... психофизиологическими и биологическими задачами влияния на человека. Объект исследования цвет и фактура в дизайне интерьера. Предметом, Задачи исследования: усвоение основ научных знаний по дизайну, ... – непременное условие профессиональной деятельности дизайнеров. Овладение методикой оценки и формирования цветовой среды и фактуры является важной составной частью подготовки студентов-дизайнеров. Цель ...

Такая гистограмма является сводной характеристикой изображения и может быть очень полезна при решении нескольких задач: распознавании похожих изображений, сжатии изображений и т.д. В литературе наиболее распространены диаграммы цветов, например, в системе QBIC [21], но было предложено и несколько других параметров, например, плотность границ, текстурность, градиент яркости и т.д. [61].

Вообще говоря, гистограммы, используемые в областях обработки изображений и машинного зрения, являются точными. Например, в гистограмме цветов содержится раздельное и точное число пикселей для каждого возможного отдельного цвета изображения. Единственным элементом аппроксимации могло бы быть число бит, используемых для представления различных цветов: наличие меньшего числа бит означает, что несколько реальных цветов будет изображаться одним цветом, ассоциируемым с числом пикселей, которое имелось бы совместно у всех заменяемых таким образом цветов. Однако даже такая разновидность аппроксимации не является распространенной. В области баз данных гистограммы используются как механизм выровненного по краям сжатия и аппроксимации распределений данных. В литературе и системах они появились в 1980-х и впоследствии изучались с возрастающей интенсивностью. В этой статье мы концентрируемся на понятии гистограмм, принятом в области баз данных, обсуждаем наиболее важные разработки, относящиеся к этой теме, и кратко характеризуем несколько проблем, которые считаем интересными, и решение которых может еще более расширить применимость и полезность гистограмм [4].

3.2. Обоснование гистограмм

Распределения данных очень полезны в системах баз данных, но обычно они слишком велики, чтобы можно было хранить их точно, так что в игру вступают гистограммы как механизм аппроксимации. Методы гистограмм в базах данных наиболее важны для оценок селективности и формировании приблизительных ответов на запросы в оптимизаторе запросов (для первого случая) и при организации обратной связи с пользователями до выполнения запросов (для обоих случаев).

Наше дальнейшее обсуждение сосредотачивается именно на этих двух случаях, и в особенности на оценки селективности диапазонных запросов (range-query), поскольку эта тема наиболее популярна в литературе. Однако не следует забывать, что показана полезность гистограмм и в контексте нескольких других проблем баз данных, например, при балансировке нагрузки при параллельном выполнении запросов [65], выполнении темпоральных соединений на основе разделов и т.д [4].

Заключение

Преимущества диаграмм

Преимущество диаграмм перед другими типами наглядной статистической информации заключается в том, что они позволяют быстро произвести логический вывод из большого количества полученных данных. Результаты расчётов, выполненных с помощью систем статистических вычислений, заносятся в таблицы. Они являются основой для последующего анализа или для подготовки статистического отчёта.

Сами по себе цифры в этих таблицах не являются достаточно наглядными, а если их много, они не производят достаточного впечатления. Кроме того, графическое изображение позволяет осуществить контроль достоверности полученных данных, так как на графике достаточно ярко проявляются возможные неточности, которые могут быть связаны с ошибками на каком-либо этапе проведения исследования. В основном, все статистические пакеты позволяют графически предоставить полученную числовую информацию в виде различных диаграмм, а затем, если это необходимо, перенести их в текстовый редактор для сборки окончательного варианта статистического отчёта [4].

3 стр., 1322 слов

Создание базы данных для паспортно-визовой службы

... Результат запроса Заключение В этом отчете представлена работа по исследованию и проектированию базы данных для паспортно-визовой службы, в полученной базе можно хранить данные о клиентах и сотрудниках паспортного стола. ... информации, её представления в удобном виде и автоматизации часто повторяющихся операций (рис. 5.1). Чтобы реализовать базу данных в access надо ввести через режим конструктора ...

Список литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/stolbchataya-diagramma/

[1] Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический словарь. — 2-е изд., испр. М.: ИНФРА-М, 1999. 479 с.. 1999.

[2] Крамер Г. Математические методы статистики.-М.:Мир, 1975.-648 с.

[3] Ланкин Г.Ф. Биометрия.-М.: Высш. шк.,1990.-352с.

[4] The History of Histograms (abridged), Proceedings of 29th International Conference on Very Large Data Bases, September 9-12, 2003, Berlin, Germany.