Характеристика теплоэнергоцентрали

Теплофикация — централизованное снабжение производственных и бытовых потребителей теплом пара, отработавшего в тепловых двигателях ТЭЦ.

Технология теплофикации, базирующаяся на ТЭЦ, производящих электроэнергию и отдающих «бросовое» тепло в теплосеть, исключительно эффективно в экономическом смысле и имеет ряд существенных преимуществ. Во-первых, эффективное сжигание твердого, в том числе многосернистого и зольного топлива в крупных котлоагрегатах вдали от энергопотребителей. Во-вторых, снижение суммарного расхода топлива для теплового и электрического потребления. В-третьих, улучшение санитарных условий и чистоты воздушного бассейна городов. В-четвертых, возможность повышения расчетной разности температур воды в подающем и обратном теплопроводах в целях снижения диаметров магистральных теплопроводов и, следовательно, капитальных затрат на строительство тепловых сетей.

1. Теплоэлектроцентрали

1.1 Характеристика ТЭЦ

Теплоэлектроцентрали (ТЭЦ) — электрические станции с комбинированной выработкой электрической энергии и тепла. Они характеризуются тем, что тепло каждого килограмма пара, отбираемого из турбины, используется частично для выработки электрической энергии, а затем у потребителей пара и горячей воды.

Исходный источник энергии на ТЭЦ — органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых атомных ТЭЦ).

Преимущественное распространение имеют паротурбинные ТЭЦ на органическом топливе, являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций. Различают ТЭЦ промышленного типа — для снабжения теплом промышленных предприятий, и отопительного типа — для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных — на расстояние до 20-30 км (в виде тепла горячей воды).

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо — мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители, для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200-250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями — градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

20 стр., 9874 слов

Установка и эксплуатация приборов учета и регулирования расхода ...

... работы приборов учета Для учета количества израсходованных воды, пара и тепла используются счетчики воды и пара, ... с потребителями за холодную и горячую воду - на основе ... возможностям. Рассмотрим основные используемые методы измерения и ... Расход тепловой энергии измеряется теплосчетчиками. Определение тепловой ... водяной камеры; 3 - корпус; 4 - фильтр; 5 - тело обтекания. Схема 4 /пример монтажа/ 1 - счетчик ...

Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квтч, отпуск тепла — 410 9 Гдж; мощность отдельных новых ТЭЦ — 1,5-1,6 Гвт при часовом отпуске тепла до (1,6-2,0) 104 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла — 150-160 квтч. Удельный расход условного топлива на производство 1 квтч электроэнергии составляет в среднем 290 г. (тогда как на ГРЭС — 370 г.); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г./квтч (на лучших ГРЭС — около 300 г./квтч).

Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара.

Рисунок 1. Минская ТЭЦ-5

В последнее время появились принципиально новые установки:

  • газотурбинные (ГТ) установки, в которых вместо паровых применяются газовые турбины, что снимает проблему;
  • парогазотурбинные (ПГУ), где тепло отработавших газов используется для подогрева воды и получения пара низкого;
  • магнитогидродинамические генераторы (МГД-генераторы), которые преобразуют тепло непосредственно в электрическую энергию.

1.2 Принцип работы ТЭЦ

Рассмотрим принципиальную технологическую схему ТЭЦ (рисунок 2), характеризующую состав ее частей, общую последовательность технологических процессов.

В состав ТЭЦ входят топливное хозяйство (ТХ) и устройства для подготовки его перед сжиганием (ПТ).

Топливное хозяйство включает приемно-разгрузочные устройства, транспортные механизмы, топливные склады, устройства для предварительной подготовки топлива (дробильные установки).

Рисунок 2. Принципиальная технологическая схема ТЭЦ

Продукты сгорания топлива — дымовые газы отсасываются дымососами (ДС) и отводятся через дымовые трубы (ДТр) в атмосферу. Негорючая часть твердых топлив выпадает в топке в виде шлака (Ш), а значительная часть в виде мелких частиц уносится с дымовыми газами. Для защиты атмосферы от выброса летучей золы перед дымососами устанавливают золоуловители (ЗУ).

Шлаки и зола удаляются обычно на золоотвалы. Воздух, необходимый для горения, подается в топочную камеру дутьевыми вентиляторами. Дымососы, дымовая труба, дутьевые вентиляторы составляют тягодутьевую установку станции (ТДУ).

Перечисленные выше участки образуют один из основных технологических трактов — топливно-газовоздушный тракт.

Второй важнейший технологический тракт паротурбинной электростанции — пароводяной, включающий пароводяную часть парогенератора, тепловой двигатель (ТД), преимущественно паровую турбину, конденсационную установку, включая конденсатор (К) и конденсатный насос (КН), систему технического водоснабжения (ТВ) с насосами охлаждающей воды (НОВ), водоподготовительную и питательную установку, включающую водоочистку (ВО), подогреватели высокого и низкого давления (ПВД и ПНД), питательные насосы (ПН), а также трубопроводы пара и воды.

4 стр., 1664 слов

Автоматизация котельной установки

... топлива, добываемого в стране. Учитывая, что автоматизация процессов горения дает до 10% экономии топлива, становится ясным повышенный интерес к комплексной автоматизации котельных. Комплексная автоматизация котельных ... пара и горячей воды, поэтому в их тепловых схемах имеются установки для подогрева воды. Принципиальная тепловая схема котельной с паровыми котлами для потребителей пара и горячей воды ...

В системе топливно-газовоздушного тракта химически связанная энергия топлива при сжигании в топочной камере выделяется в виде тепловой энергии, передаваемой радиацией и конвекцией через стенки металла трубной системы парогенератора воде и образуемому из воды пару. Тепловая энергия пара преобразуется в турбине в кинетическую энергию потока, передаваемую ротору турбины. Механическая энергия вращения ротора турбины, соединенного с ротором электрического генератора (ЭГ), преобразуется в энергию электрического тока, отводимого за вычетом собственного расхода электрическому потребителю.

Тепло проработавшего в турбинах рабочего тела можно использовать для нужд внешних тепловых потребителей (ТП).

Потребление тепла происходит по следующим направлениям:

1. Потребление для технологических целей;

2. Потребление для целей отопления и вентиляции жилых, общественных и производственных зданий;

3. Потребление для других бытовых нужд.

Количество тепла, отпускаемое потребителям, можно регулировать двумя способами: количественным, т.е. изменением расхода сетевой воды при сохранении температурного перепада, и качественным, т.е. изменением температуры воды, отдаваемой в сеть.

Регулирование количества отпускаемого потребителю тепла производится в зависимости от среднесуточной температуры наружного воздуха. Такое регулирование связано с изменением гидравлического режима тепловых сетей, т.е. изменением давления воды в прямой и обратной магистралях, вследствие чего распределение количества воды, а следовательно, и тепла по отдельным потребителям нарушается. Поэтому этот способ применяется обычно не в чистом виде, а совместно с качественным.

Качественный способ заключается в изменении количества греющего пара, подаваемого в подогреватели. В теплофикационных турбинах применяют связанное регулирование давления в отборах и подвода свежего пара: при увеличении потребления тепла внешними потребителями и снижении давления в линиях отбора пара одновременно прикрывают поворотные диафрагмы регулируемых отборов и увеличивается открытие регулирующих клапанов свежего пара. При уменьшении расхода пара на внешнего потребителя и повышении давления пара в линиях отбора одновременно увеличивается открытие окон в поворотной диафрагме и прикрываются регулирующие клапаны свежего пара. Связанное регулирование сокращает продолжительность переходных процессов, обуславливаемых изменением энергетических нагрузок турбоагрегата.

2. Мини-ТЭЦ

Мини-ТЭЦ (малая теплоэлектроцентраль) — теплосиловые установки, служащие для совместного производства электрической и тепловой энергии в агрегатах единичной мощностью до 25 МВт, независимо от вида оборудования. В настоящее время нашли широкое применение в зарубежной и отечественной теплоэнергетике следующие установки: противодавленческие паровые турбины, конденсационные паровые турбины с отбором пара, газотурбинные установки с водяной или паровой утилизацией тепловой энергии, газопоршневые, газодизельные и дизельные агрегаты с утилизацией тепловой энергии различных систем этих агрегатов. Термин когенерационные установки используется в качестве синонима терминов мини-ТЭЦ и ТЭЦ, однако он является более широким по значению, так как предполагает соместное производство (co — совместное, generation — производство) различных продуктов, которыми могут быть, как электрическая и тепловая энергия, так и другие продукты, например, тепловая энергия и углекислый газ, электрическая энергия и холод и т.д.

14 стр., 6559 слов

Альтернативные источники энергии и возможности их применения в России

... энергию ветра, воды, солнца, геотермальную энергию, а также тепло, содержащееся в воде, воздухе и земле. 1. Основные виды Альтернативной энергии 1.1 Геотермальная энергия (тепло земли) Геотермальная энергия ... энергия . Несмотря на такой большой потенциал в новой энергетической программе России вклад возобновляемых источников энергии ... скважины и систему сбора пара и является относительно невысокой. ...

Фактически термин тригенерация, предполагающий производство электроэнергии, тепловой энергии и холода также является частным случаем когенерации. Отличительной особенностью мини-ТЭЦ является более экономичное использование топлива для произведенных видов энергии в сравнении с общепринятыми раздельными способами их производства. Это связано с тем, что электроэнергия в масштабах страны производится в основном в конденсационных циклах ТЭС и АЭС, имеющих электрический КПД на уровне 30-35% при отсутствии теплового потребителя. Фактически такое положение дел определяется сложившимся соотношением электрических и тепловых нагрузок населенных пунктов, их различным характером изменения в течение года, а также невозможностью передавать тепловую энергию на большие расстояния в отличие от электрической энергии.

Модуль мини-ТЭЦ включает газопоршневой, газотурбинный или дизельный двигатель, генератор электроэнергии, теплообменник для утилизации тепла от воды при охлаждении двигателя, масла и выхлопных газов. К мини-ТЭЦ обычно добавляют водогрейный котел для компенсации тепловой нагрузки в пиковые моменты.

Достоинствами мини-ТЭЦ являются:

  • низкая стоимость вырабатываемой электроэнергии и тепла;
  • КПД мини-ТЭЦ достигает 88-92%, что вдвое больше того же показателя традиционных ТЭЦ на паровых турбоагрегатах;
  • многотопливность: возможность использования в качестве топлива отходов, попутных газов при нефтедобыче, отходов древесины при проведении санитарных вырубок;
  • гибкость в конструкции, исполнении и использовании, широкий выбор технологических схем для получения электроэнергии, тепла в виде пара / горячей воды или холода (вода с температурой 6-12°С) для систем кондиционирования;
  • возможность максимально приблизить производство энергии к потребителям, а следовательно, сократить протяженность сетей, снизить затраты на их строительство и содержание;
  • быстрая окупаемость;
  • низкий расход топлива, большой моторесурс и долговечность;
  • экологическая безопасность.

3. ТЭЦ в Беларуси

3.1 Минская ТЭЦ-5

Рисунок 3. Минская ТЭЦ-5

Минская ТЭЦ-5

Задумывалась как атомная ТЭЦ, но строительство было остановлено после аварии на Чернобыльской АЭС. Была перепрофилирована в теплоэлектроцентраль.

4 августа 1999 года был введён в работу 1-й энергоблок мощность 330 МВт.

Ведётся строительство второго энергоблока мощностью 450 МВт, пуск запланирован на конец 2011 года. Блок строят РУП «Минскэнерго» и Китайская национальная корпорация по зарубежному экономическому сотрудничеству. Всего на строительство планируется потратить более 260 млн. евро, которые выделил Государственный банк развития Китая.

9 стр., 4248 слов

«Экология» НЕТРАДИЦИОННЫЕ (АЛЬТЕРНАТИВНЫЕ) ИСТОЧНИКИ ЭНЕРГИИ ...

... энергия составляет 0,1% в отношении возможных для использования запасов угля, природного газа и нефти, вместе взятых. Но ведь потребление всех видов энергетических ресурсов ... электростанций общей мощностью более 600 ... энергию. Установка мини-ОТЕС (преобразование тепловой энергии ... топливо – нефть, газ, уголь. Эти источники энергии невозобновимы и при нынешнее темпах роста их добычи они могут быть, по ...

3.2 Минская ТЭЦ-3

ТЭЦ-3 , филиал РУП Минскэнерго — предприятие энергетики, расположенное в юго-восточной части Минска, построена в 1951 году.

Рисунок 4. ТЭЦ-3 (Минск)

ТЭЦ с предполагаемой мощностью 25 МВт изначально предназначалась для обеспечения электроэнергией, паром и теплом Минского тракторного завода. В настоящее время ТЭЦ обслуживает крупнейший промышленный узел, образованный тракторным, автомобильным, моторным, подшипниковым и другими заводами, а также обслуживает до 25% жилого фонда города.

Мощность теплоэнергоцентрали достигает 370 МВт. Планируется реконструкция, в результате которой станция станет более экономичной, а мощность достигнет 550 МВт.

Снабжение технической водой обеспечивает Чижовское водохранилище.

теплоэлектроцентраль магнитогидродинамический энергия турбина

Заключение

Обобщая изложенное выше, можно утверждать, что на ТЭЦ расход топлива на выработку электрической энергии может быть почти в 2 раза ниже, чем на электростанции, вырабатывающей только электрическую энергию.

Анализ структуры потребления тепла в республике показывает, с одной стороны, его большой удельный вес в общем потреблении топлива и сравнительно высокую степень централизации теплоснабжения, а с другой стороны, свидетельствует, что 34 млн Гкал тепла, т.е. почти половина от общего количества, вырабатывается на котельных разных ведомств, а не на ТЭЦ.

Естественно, строительство ТЭЦ разной мощности и типов, в том числе на промышленных предприятиях, не противопоставляется строительству и реконструкции крупных конденсационных электростанций. Реально учитывая сложившуюся экономическую ситуацию, следует помнить, что в ближайшей перспективе нет альтернативы широкому строительству газотурбинных и парогазовых ТЭЦ главным образом средней и малой мощности. Однако эти ТЭЦ требуют особого внимания государства. Из общая установленная мощность может составить 20-35% мощности ныне существующей энергосистемы и тем самым позволит надежно решить проблему замещения устаревшего основного электрооборудования и дальнейшего развития энергетической базы на современной технологической основе.

Список источников

[Электронный ресурс]//URL: https://drprom.ru/referat/teploelektrotsentrali-2/

1. Березовский, Н.И. Технология энергосбережения: учеб. пособие / Н.И. Березовский, С.Н. Березовский, Е.К. Костюкевич. — Минск: БИП-С Плюс, 2007. — 152 с.

2. Кравченя, Э.М. Охрана труда и основы энергосбережения: учеб. пособие / Э.М. Кравченя, Р.Н. Козел, И.П. Свирид. — Минск: ТетраСистемс, 2005. — 288 с.

3. Википедия — свободная энциклопедия // Международная стандартизация [Электронный ресурс]. — Режим доступа: http://ru.wikipedia.org/wiki/ТЭЦ. — Дата доступа: 15.03.2012

4. Сибилин, Л.Н. Энергетика и устойчивое развитие / Л.Н. Сибилин // Общество и экономика. — 2010. — №3-4. — С. 161-277