Тепловые электростанции

Открытие в 1838 году водородно-кислородного топливного элемента принадлежит английскому ученому У. Грову. Исследуя разложение воды на водород и кислород он обнаружил побочный эффект — электролизер вырабатывал электрический ток.

В СССР первые публикации о топливных элементах появились в 1941 году.

Первые исследования начались в 60-х годах. РКК «Энергия» (с 1966 года) разрабатывала PAFC элементы для советской лунной программы. С 1987 года по 2005 «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран», исследовались щелочные AFC элементы. На «Буране» были установлены 10 кВт. топливные элементы.

В 70-80-е годы «Квант» совместно с рижским автобусным заводом «РАФ» разрабатывали щелочные элементы для автобусов. Прототип автобуса на топливных элементах был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил к.т. н. Мирзоев Г. К.

В 2003 году было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению в 2005 году Национальной инновационной компании «Новые энергетические проекты», которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твердым полимерным электролитом мощностью 1 кВт.

2 Горючее для топливного элемента

Ископаемое топливо (уголь, газ и нефть) состоит в основном из углерода. При сжигании атомы топлива теряют электроны, а атомы кислорода воздуха приобретают их. Так в процессе окисления атомы углерода и кислорода соединяются в продукты горения — молекулы углекислого газа. Этот процесс идет энергично: атомы и молекулы веществ, участвующих в горении, приобретают большие скорости, а это приводит к повышению их температуры. Они начинают испускать свет — появляется пламя.

3 стр., 1255 слов

Основные характеристики карбюратора и топливного насоса автомобиля ГАЗ

... ремонт коробки передач и топливного насоса высокого давления автомобиля КамАЗ-5320. Порядок выполнения работ при техническом обслуживании агрегатов. Технологические карты ремонта. дипломная работа [1,8 M], добавлен 13.04.2014 Система технического обслуживания и ...

Химическая реакция сжигания углерода имеет вид:

+ O2 = CO2 + тепло

В процессе горения химическая энергия переходит в тепловую энергию благодаря обмену электронами между атомами топлива и окислителя. Этот обмен происходит хаотически.

 горючее для топливного элемента 1

Структурная схема электростанции на топливном элементе

Горение — обмен электронов между атомами, а электрический ток — направленное движение электронов. Если в процессе химической реакции заставить электроны совершать работу, то температура процесса горения будет понижаться. В ТЭ электроны отбираются у реагирующих веществ на одном электроде, отдают свою энергию в виде электрического тока и присоединяются к реагирующим веществам на другом.

Основа любого ХИТ — два электрода соединенные электролитом. ТЭ состоит из анода, катода и электролита. На аноде окисляется, т.е. отдает электроны, восстановитель (топливо CO или H2), свободные электроны с анода поступают во внешнюю цепь, а положительные ионы удерживаются на границе анод-электролит (CO+, H+).

С другого конца цепи электроны подходят к катоду, на котором идет реакция восстановления (присоединение электронов окислителем O2-).

Затем ионы окислителя переносятся электролитом к катоду.

В ТЭ вместе сведены вместе три фазы физико-химической системы:

  • газ (топливо, окислитель);
  • электролит (проводник ионов);
  • металлический электрод (проводник электронов).

В ТЭ происходит преобразование энергии окислительно-восстановительной реакции в электрическую, причем, процессы окисления и восстановления пространственно разделены электролитом. Электроды и электролит в реакции не участвуют, но в реальных конструкциях со временем загрязняются примесями топлива. Электрохимическое горение может идти при невысоких температурах и практически без потерь. Таким образом, ТЭ оказывается «всеядным».

Усложняет использование ТЭ то, что для них топливо необходимо «готовить». Для ТЭ получают водород путем конверсии органического топлива или газификации угля. Поэтому структурная схема электростанции на ТЭ, кроме батарей ТЭ, преобразователя постоянного тока в переменный и вспомогательного оборудования включает блок получения водорода.

I.3 Два направления развития ТЭ

Существуют две сферы применения ТЭ: автономная и большая энергетика.

Для автономного использования основными являются удельные характеристики и удобство эксплуатации. Стоимость вырабатываемой энергии не является основным показателем.

Для большой энергетики решающим фактором является экономичность. Кроме того, установки должны быть долговечными, не содержать дорогих материалов и использовать природное топливо при минимальных затратах на подготовку.

Наибольшие выгоды сулит использование ТЭ в автомобиле. Здесь, как нигде, скажется компактность ТЭ. При непосредственном получении электроэнергии из топлива экономия последнего составит порядка 50%.

Впервые идея использования ТЭ в большой энергетике была сформулирована немецким ученым В. Освальдом в 1894 году. Позднее получила развитие идея создания эффективных источников автономной энергии на основе топливного элемента.

После этого предпринимались неоднократные попытки использовать уголь в качестве активного вещества в ТЭ. В 30-е годы немецкий исследователь Э. Бауэр создал лабораторный прототип ТЭ с твердым электролитом для прямого анодного окисления угля. В это же время исследовались кислородно-водородные ТЭ.

4 стр., 1554 слов

Электрический ток в жидкостях (электролитах)

... проводят электрический ток, называются неэлектролитами. Электролитическая диссоциация , Процесс распада электролита на ионы называется электролитической диссоциацией. С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах ...

В 1958 году в Англии Ф. Бэкон создал первую кислородно-водородную установку мощностью 5 кВт. Но она была громоздкой из-за использования высокого давления газов (2..4 МПа).

С 1955 года в США К. Кордеш разрабатывал низкотемпературные кислородно-водородные ТЭ. В них использовались угольные электроды с платиновыми катализаторами. В Германии Э. Юст работал над созданием неплатиновых катализаторов.

После 1960 года были созданы демонстрационные и рекламные образцы. Первое практическое применение ТЭ нашли на космических кораблях «Аполлон». Они были основными энергоустановками для питания бортовой аппаратуры и обеспечивали космонавтов водой и теплом.

Основными областями использования автономных установок с ТЭ были военные и военно-морские применения. В конце 60-х годов объем исследований по ТЭ сократился, а после 80-х вновь возрос применительно к большой энергетике.

Фирмой VARTA разработаны ТЭ с использованием двухсторонних газодиффузионных электродов. Электроды такого типа называют «Янус». Фирма Siemens разработала электроды с удельной мощностью до 90 Вт/кг. В США работы по кислородно-водородным элементам проводит United Technology Corp.

В большой энергетике очень перспективно применение ТЭ для крупномасштабного накопления энергии, например, получение водорода. Возобновляемые источники энергии (солнце и ветер) отличаются рассредоточеностью. Их серьезное использование, без которого в будущем не обойтись, немыслимо без емких аккумуляторов, запасающих энергию в той или иной форме.

Проблема накопления актуальна уже сегодня: суточные и недельные колебания нагрузки энергосистем заметно снижают их эффективность и требуют так называемых маневренных мощностей. Один из вариантов электрохимического накопителя энергии — топливный элемент в сочетании с электролизерами и газгольдерами*.

I.4 Первое поколение ТЭ

Наибольшего технологического совершенства достигли среднетемпературные ТЭ первого поколения, работающие при температуре 200..230° С на жидком топливе, природном газе либо на техническом водороде*. Электролитом в них служит фосфорная кислота, которая заполняет пористую углеродную матрицу. Электроды выполнены из углерода, а катализатором является платина (платина используется в количествах порядка нескольких граммов на киловатт мощности).

Одна таких электростанций введена в строй в штате Калифорния 1991 году. Она состоит из восемнадцати батарей массой по 18 т каждая и размещается в корпусе диаметром чуть более 2 м и высотой около 5 м. Продумана процедура замены батареи с помощью рамной конструкции движущейся по рельсам.

Две электростанции на ТЭ США поставили в Японию. Первая из них была пущена еще в начале 1983 года. Эксплуатационные показатели станции соответствовали расчетным. Она работала с нагрузкой от 25 до 80% от номинальной. КПД достигал 30..37% — это близко к современным крупным ТЭС. Время ее пуска из холодного состояния — от 4 ч до 10 мин., а продолжительность изменения мощности от нулевой до полной составляет всего 15 с.

Сейчас в разных районах США испытываются небольшие теплофикационные установки мощностью по 40 кВт с коэффициентом использования топлива около 80%. Они могут нагревать воду до 130° С и размещаются в прачечных, спортивных комплексах, на пунктах связи и т.д. Около сотни установок уже проработали в общей сложности сотни тысяч часов. Экологическая чистота электростанций на ТЭ позволяет размещать их непосредственно в городах.

9 стр., 4143 слов

Перспективы развития автомобильных двигателей, работающих на водороде

... энергии, что делает водород слишком дорогим. Глава 2. Перспективы в автомобилестроении 2.1. Двигатель внутреннего сгорания работающий на водороде Топливный ... взрывоопасную смесь водорода с кислородом в объемном соотношении 2:1. Не более перспективным выглядит и сжиженный водород. Кому захочется ... 1. Водородные технологии 1.1Водород Водород - один из наиболее распространённых элементов и на Земле. В ...

Первая топливная электростанция в Нью-Йорке, мощностью 4,5 МВт, заняла территорию в 1,3 га. Теперь для новых станций с мощностью в два с половиной раза большей нужна площадка размером 30×60 м. Строятся несколько демонстрационных электростанций мощностью по 11 МВт. Поражают сроки строительства (7 месяцев) и площадь (30х60 м), занимаемая электростанцией. Расчетный срок службы новых электростанций- 30 лет.

Технический водород — продукт конверсии органического топлива, содержащий незначительные примеси окиси углерода.

I.5 Второе и третье поколение ТЭ

Лучшими характеристиками обладают уже проектирующиеся модульные установки мощностью 5 МВт со среднетемпературными топливными элементами второго поколения. Они работают при температурах 650..700° С. Их аноды делают из спеченных частиц никеля и хрома, катоды — из спеченного и окисленного алюминия, а электролитом служит расплав смеси карбонатов лития и калия. Повышенная температура помогает решить две крупные электрохимические проблемы:

  • повысить эффективность процесса восстановления окислителя на катоде.

Еще эффективнее будут высокотемпературные топливные элементы третьего поколения с электролитом из твердых оксидов (в основном двуокиси циркония).

Их рабочая температура — до 1000° С. КПД энергоустановок с такими ТЭ близок к 50%. Здесь в качестве топлива пригодны и продукты газификации твердого угля со значительным содержанием окиси углерода. Не менее важно, что сбросовое тепло высокотемпературных установок можно использовать для производства пара, приводящего в движение турбины электрогенераторов.

Фирма Vestingaus занимается топливными элементами на твердых оксидах с 1958 года. Она разрабатывает энергоустановки мощностью 25..200 кВт, в которых можно использовать газообразное топливо из угля. Готовятся к испытаниям экспериментальные установки мощностью в несколько мегаватт. Другая американская фирма Engelgurd проектирует топливные элементы мощностью 50 кВт работающие на метаноле с фосфорной кислотой в качестве электролита.

В создание ТЭ включается все больше фирм во всем мире. Американская United Technology и японская Toshiba образовали корпорацию International Fuel Cells. В Европе топливными элементами занимаются бельгийско-нидерландский консорциум Elenko, западногерманская фирма Siemens, итальянская Fiat, английская Jonson Metju.

I.6 Применение топливных элементов

химический энергия топливный элемент

Стационарные приложения

  • производство электрической энергии (на электрических станциях),
  • аварийные источники энергии,
  • [Электронный ресурс]//URL: https://drprom.ru/referat/teplovyie-elektrostantsii/

  • автономное электроснабжение,

Транспорт

 горючее для топливного элемента 2 <http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Honda_FC_STACK.JPG>

3 стр., 1423 слов

Получение водорода

... и концентрирования водорода. Низкотемпературная конденсация и фракционирование. Этот процесс характеризуется высокой степенью извлечения водорода из газовой смеси и ... элемент. Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород ... мощностью 1060 МВт для ядерно-химического комплекса по производству водорода и смесей на его основе, по выпуску аммиака и ...

  • автомобильные топливные элементы Honda.
  • электромобили, автотранспорт,
  • морской транспорт,
  • железнодорожный транспорт, горная и шахтная техника
  • вспомогательный транспорт (складские погрузчики, аэродромная техника и т.д.)

Бортовое питание

  • авиация, космос,
  • подводные лодки, морской транспорт,

Мобильные устройства

  • портативная электроника,
  • питание сотовых телефонов,
  • зарядные устройства для армии.

I.7 Проблемы топливных элементов

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью, долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Существует множество способов производства водорода, но в настоящее время около 50% водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, т.к. он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается. Например, средняя цена электроэнергии в США выросла в 2007 г. до $0,09 за кВт., тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04- $0,07. В Японии киловатт электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами. Т.е. с ростом цен на энергоносители производство водорода электролизом воды становится более конкурентоспособным.

К сожалению, в водороде, произведённом из природного газа, будет присутствовать СО, отравляющий катализатор. Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160°С в топливе может присутствовать 1%СО.

Цена некоторых водородных топливных элементов пока остаётся высокой. Но в будущем цена будет снижаться при организации массового производства топливных элементов.

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры и более высокая себестоимость энергии. Возникает проблема «курицы и яйца» — зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

10 стр., 4794 слов

Топливно-энергетический комплекс Украины

... том числе коксующих – 15, энергетических – 32 млрд. т. Первые месторождения угля в Украине в Донбассе были открытые в ... до 0,8-1,6%. Гумусовый уголь имеет такое содержимое: углерод – 81,1-85,4%, водород – 4,5-6,1%, кислород, азот, сера – 9,2-13,1%. Пласты угля залегают ... влажность 55-60%, среднее содержание серы 2,3-3,1%, углерода 60-70%, водорода 5-6,5%, кислорода и азота 23-26%, смолы 15-16%, выход ...

I.8 Твердооксидный топливный элемент

Твердооксидный топливный элемент — (англ. Solid oxide fuel cells, SOFC), применяется в основном для стационарных установок мощностью от 1 кВт и выше. Они работают при очень высокой температуре (700 ºC — 1000 ºC), и их отработанные газы могут быть использованы для приведения в действия газовой турбины, чтобы повысить коэффициент полезного действия установки. КПД такой гибридной установки может достигать 70%. В этих топливных элементах ионы кислорода проходят через твёрдый оксид, который используется в качестве электролита, и при высокой температуре реагируют с водородом на аноде. Хотя в твердооксидных топливных элементах необходима высокая рабочая температура (что требует специальных керамических материалов), зато они не нуждаются в таком дорогом катализаторе, как платина (топливные элементы с протонно-обменной мембраной).

Это также значит, что твердооксидные топливные элементы не отравляются монооксидом углерода и в них могут использоваться разные виды топлива. Твердооксидные топливные элементы могут работать на метане, пропане, бутане, газе, полученном из биомассы. Конечно, сера, содержащаяся в топливе, должна быть удалена перед поступлением его в топливный элемент, но это легко сделать с помощью адсорбентов..
Постановка задачи работы

Из литературного обзора видно, что топливные элементы имеют большие перспективы в энергетике. Очевидна необходимость их доработки для повышения эффективности.

Задачей данной работы является синтез образца состава Sr2Ga2O5 методом высокотемпературного сплавления оксидов..
Методика эксперимента

Для получения 5 грамм сложного оксида состава Sr2Ga2O5 из оксидов SrO и Ga2O3, по уравнению:

  • SrO + Ga2O3 Sr2Ga2O5;

рассчитали исходные массы данных оксидов:

  • mGa2O3=2,3746 г.;
  • mSrO=2,6254 г.

Так как исходными реагентами были Sr(NO3)2 (твёрдый) и Ga(NO3)3 (жидкий), из которых с помощью соответствующих реакций:

9Sr(NO3)2 + 10C2H5O2N 9SrO + 14N2 + 20 CO2 + 25 H2O

Ga(NO3)3 + 10C2H5O2N 3Ga2O3 + 14N2 + 20 CO2 + 25H2O

получали оксиды SrO и Ga2O3, рассчитали массы реагентов:

(NO3)2=6,7832 г. (NO3)3=8,1968 г.

Для Ga(NO3)3 массу пересчитали в объём (т.к. в растворе):

(NO3)3=40 мл.

Реакции проводили в одной чашке, суммарная масса глицина составила:

mNH2CH2COOH=21,1982 г.

В реакционную смесь добавили дистиллированной воды и проводили реакцию, при нагревании, до полного испарения воды. После чего поместили полученную субстанцию в тигель и отожгли при T=700 0C, в результате этого образовался мелкодисперсный порошок..
Результаты

Образец состава Sr2Ga2O5, был синтезирован по методике описанной выше. Образец представляет собой порошок белого цвета, с зеленоватым оттенком. Окончательная термообработка для формирования кристаллических частиц, проводилась при температурах 900 OC, 1000 OC, 1200 OC. (не менее 24 часов при каждой температуре)

Список используемой литературы:

[Электронный ресурс]//URL: https://drprom.ru/referat/teplovyie-elektrostantsii/

1. Коровин Николай Васильевич. Электрохимические генераторы. 1974

  • Фильштих, Вольф. Топливные элементы. 1968

Интернет-ресурсы:

15 стр., 7104 слов

Топливная система судна

... топливной системы При пуске коленчатый вал вращается с частотой, достаточной для пуска, но вспышек топлива в цилиндрах нет или они происходят с перебоями и дизель останавливается. Дизель ... положения топливных насосов. Для устранения неисправности необходимо остановить дизель, выключив топливные насосы, установить правильное нулевое положение топливных насосов. Дизель нагревается, температура ...

  • <http://n-t/tp/ie/te.htm>
  • www.krugosvet.ru <http://www.krugosvet.ru>
  • www.membrana.ru <http://www.membrana.ru>
  • www.cogeneration.ru <http://www.cogeneration.ru>
  • www.nic-nep.ru <http://www.nic-nep.ru>
  • science.compulenta.ru

www.energospace.ru <http://www.energospace.ru>