В настоящее время наряду со строительством зданий и сооружений различного назначения с применением несущих сборных и монолитных железобетонных конструкций все более широко применяются каменные и армокаменные конструкции. Этому способствуют как большие запасы природных камней, так и материалов для искусственных камней и наличие развитой промышленности этих строительных материалов.
Вопрос о увеличении несущей способности проектируемой или существующей кладки остается актуальным всегда. Сегодня существуют способы решения таких задач, некоторые из которых предложены в реферате.
Тема реферата — «Деформация и усиление кирпичной кладки», целью ставится рассмотрение факторов, являющихся причиной разрушения кладки, а также исследование методов определения несущей способности кладки и способов решения проблем, связанных с образовавшимися деформациями.
1. Кирпичная кладка и ее деформации.
При сжатии кладки осевым деформациям сжатия по направлению действия силы всегда сопутствуют деформации поперечного расширения. Материалы, составляющие кладку (кирпич, камень, раствор), работают совместно. Более жесткие материалы (чаще камень) сдерживают поперечные деформации менее жестких материалов (раствор).
В результате более жесткие материалы (кирпич, камень) оказываются растянутыми, менее жесткие (раствор) — сжатыми.
Растягивающие усилия в поперечном направлении, которые и являются одной из главных причин разрушения кладки, особенно велики для кладок на растворах низкой прочности.
Каменная кладка является монолитным неоднородным упругопластическим материалом. Даже при равномерном распределении нагрузки по всему сечению сжатого элемента камень и раствор в кладке находятся в условиях сложного напряженного состояния. Они одновременно подвержены внецентренному сжатию, изгибу и растяжению, срезу и смятию (рис. 1).
значительная неоднородность растворных швов,
Проведенными экспериментальными исследованиями с различными видами кладок установлено, что в зависимости от величины действующих напряжений при сжатии работу кладки можно подразделить на четыре характерные стадии (рис. 2).
Каменная кладка. Виды. Растворы. Назначение
... под влиянием действующих на кладку нагрузок. Действующим на кладку силам противостоит в основном камень (раствор значительно менее прочен). Поэтому необходимо, чтобы камень воспринимал только сжимающие ... процесс кладки В зависимости от вида применяемых материалов каменную кладку подразделяют на кладку из искусственных и природных камней. В свою очередь для кладки из искусственных камней широко ...
Первая стадия соответствует нормальной эксплуатации кладки, когда усилия, возникающие в кладке под нагрузкой, не вызывают видимых ее повреждений. Переход кладки во вторую стадию работы характеризуется появлением небольших трещин в отдельных кирпичах (рис. 2, б).
В этой стадии кладка еще несет нагрузку (величина ее составляет 60-80% от разрушающей), и дальнейшего развития трещин при неизменной нагрузке не наблюдается.
Величина нагрузки, при которой появляются первые трещины, зависит от механических свойств кирпича, конструкции кладки и деформативных свойств раствора. Последние же зависят от вида раствора и его возраста (т.е. возраста кладки).
Цементные растворы наиболее жесткие; известковые, наоборот, наиболее деформативны. С увеличением возраста деформативность растворов снижается. Чем меньше деформативность раствора, тем более хрупкой оказывается кладка.
Повышение хрупкости кладки с увеличением ее возраста и при применении малодеформативных растворов должно учитываться при оценке запасов прочности поврежденной кладки. Если при появлении незначительной трещины в кладке раннего возраста на известковом растворе имеется определенный запас прочности, то появление трещины в кладке большого возраста, изготовленной на цементном растворе, свидетельствует о ее значительной перегрузке. Во всех случаях появление первых трещин в кладке должно рассматриваться как сигнал для установления причин их появления и, если потребуется, принятия мер по усилению кладки или снижению действующих на нее нагрузок.
При увеличении нагрузки после появления первых трещин происходит как их развитие, так и возникновение и развитие новых трещин, которые соединяются между собой, пересекая значительную часть кладки в вертикальном направлении и постепенно расслаивает ее на отдельные ветви, каждая из которых оказывается в условиях внецентренного загружения (третья стадия работы кладки; рис. 2, в).
При длительном действии этой нагрузки, даже без ее увеличения, будет постепенно (вследствие развития пластических деформаций) происходить дальнейшее развитие трещин, расслаивающих кладку на тонкие гибкие столбики. И третья стадия перейдет в четвертую — стадию разрушения от потери устойчивости расчлененной кладки (рис. 2, г).
неравномерная плотность раствора в швах
Последовательность разрушения кладки, выполненной из камней других видов, в общем такая же, как и при разрушении кирпичной кладки. Разница заключается в том, что с увеличением высоты камня увеличивается хрупкость кладки, и момент появления в ней первых трещин приближается к моменту разрушения.
Анализ результатов экспериментов позволил установить ряд факторов, влияющих на прочность кладки при сжатии:
- прочность кладки зависит от марки камня и марки раствора, но прочность кирпича на сжатие используется незначительно. С ростом прочности кирпича и раствора прочность кладки возрастает, но до определенного предела.
- изгиб и срез отдельных кирпичей происходит вследствие неравномерной плотности раствора в шве; причем это в большей степени проявляется при слабых растворах, что подтверждается просвечиванием рентгеновскими лучами растворного шва кладки.
- на прочность кладки влияют форма поверхности кирпича и толщина шва: чем ровнее кирпич и тоньше шов, тем прочнее кладка.
- на прочность кладки влияют размер сечения кладки (толщина стены): при уменьшении размеров сечения кладки ее прочность возрастает. Это отчасти объясняется уменьшением количества швов.
- прочность кладки возрастает с течением времени вследствие возрастания прочности раствора.
2.
Определение прочности кладки неразрушающим методом пластических деформаций.
При ремонте и реконструкции здания возникает вопрос: надо ли усиливать те или иные конструкции. Ответ на этот вопрос может быть дан только после определения действительной несущей способности конструкции в сравнении с действующей на нее реальной нагрузкой.
Определить несущую способность конструкции возможно, если известны прочностные свойства материалов, из которых она выполнена, характер и объем повреждений и дефектов.
Для определения прочности кирпичной кладки необходимо знание прочности материалов ее составляющих — кирпича и раствора. Для этого существуют несколько методов. Один из них — определение прочности материала с помощью молотка К.П. Кашкарова, который применяется для неразрушающего контроля прочности бетона.
Этот метод обеспечивает хорошую точность измерений, проверен в натурных условиях в течение нескольких лет при обследовании каменных конструкций зданий и домов.
(d k )
Указанный метод используется при прочности кирпича 25-300 кгс/см 2 , раствора — 5-150 кгс/см2 .
R сж
построенная на основании испытаний керамического кирпича марок 50-250, представлена на рис. 4. Кривая зависимости прочности раствора на сжатие (R вп ) от , по результатам испытаний кубов с размерами ребра 7,07 см из кладочного раствора марок 10-150, представлена на рис. 5.
|
При определении и оценке прочности кирпичной кладки необходимо учитывать сведения, полученные в результате технического осмотра конструкций здания; изучения проектных материалов; выявления фактических условий эксплуатации (в том числе и путем опроса лиц, эксплуатирующих здание).
При контроле прочности кирпичной кладки необходимо:
- назначать /определить/ места испытаний;
- провести испытания;
- обработать данные испытаний и дать заключение по результатам испытаний.
Количество измерений на один этаж одной секции дома /здания/ должно быть не менее N = 18.
За секцию принимается часть здания между деформационными или антисейсмическими швами общей длиной не более 30м. Для одноэтажных зданий за один этаж принимается высота до 4,5м.
Для молотка конструкции К.П. Кашкарова (рис. 6) используется эталонный стержень диаметром 10-12мм, длиной 150 мм, изготавливаемый из круглой прутковой стали марки Ст. 3 класса А-1 без дополнительной обработки (кроме очистки).
Один конец стержня
Поверхность камня и раствора шва перед испытанием подлежит обработке наждачной бумагой или шлифовальным кругом и очищается от пыли.
Толщина растворного шва кладки, подлежащая испытанию, должна быть не менее 10 мм.
На каждом участке выборочно наносится по пять ударов по кирпичу раствору швов. Наносится по одному удару на каждый из выбранных для испытаний пяти кирпичей и растворных швов.
Для выполненной серии отпечатков на каждом участке вычисляется сумма диаметров всех полученных отпечатков на кирпичах — или растворе — и на эталонном стержне — , а затем находят их отношение: . По данным испытаний определяется прочность кирпича (рис. 4) и раствора кладки (рис. 5) для каждого участка.
Следует подчеркнуть, что точность результатов определения прочности раствора и кирпича каменной кладки неразрушающим методом с использованием молотка К.П. Кашкарова прямо зависит от опыта, технической грамотности, чувства ответственности специалиста, осуществляющего испытания.
3. Усиление кирпичной кладки с помощью арматуры
Несущая способность каменной кладки может быть повышена введением в рабочее сечение более прочных материалов для совместной работы их с кладкой. Наиболее распространённым способом усиления кладки является её армирование, которое может быть двух видов: а) поперечное (сетчатое) из стальных сеток, укладываемых в горизонтальных швах; б) продольное — из продольных арматурных стержней с хомутами, устанавливаемых снаружи кладки или внутри в швах между кирпичами.
Поперечное
Сетчатое армирование допускается применять только в тех случаях, когда повышение марок кирпича, камней и растворов не обеспечивает требуемой прочности кладки и площадь поперечного сечения элемента не может быть увеличена.
Не допускается применять сетчатое армирование стен помещений с влажным и мокрым режимами.
Марка кирпича, применяемого для армокаменных конструкций, как правило, должна быть не менее 75, а камня- не менее 50. Как исключение при соответствующем обосновании может быть допущено применение кирпича марки 50 и камня марки 35.
Марка раствора, в который укладывают арматуру, должна быть не ниже 50.
Для поперечного армирования применяются квадратные или прямоугольные в плане сетки или сетки типа «зигзаг» (рис. 7,а,б).
Сетки типа «зигзаг» укладываются в 2 смежных рядах кладки так, чтобы направление стержней в них было взаимно перпендикулярным. Такая пара по несущей способности считается равноценной одной прямоугольной. Сетки «зигзаг» состоят из нечетного числа стержней (рис. 7,в).
Размеры ячеек сетки с 1 , с2 принимаются не менее 30 мм и не более 120 мм, они также не должны превышать 1/3 наименьшего размера сечения в плане. Расстояние между сетками по высоте s не должно превышать 5 рядов кирпичной кладки из обыкновенного кирпича (40,0 см), 4 рядов кладки из утолщенного кирпича и 3 рядов кладки из керамических камней и должно быть не более наименьшего размера сечения.
Сетки типа «зигзаг» более эффективны по сравнению с прямоугольными, особенно в кладке ранних возрастов и в свежесложенной кладке. Это имеет практическое значение при необходимости повышения прочности зимней кладки в момент оттаивания.
Продольное
Армирование столбов продольной вертикальной арматурой может быть внутренним (рис. 8,а) с укладкой арматуры в вертикальных швах кладки или наружным (рис. 8,6) под слоем цементного раствора, который защищает ее от коррозии.
Внешнее армирование столбов отличается простотой и удобством выполнения, и применяется во всех случаях, где отсутствуют те особые условия, которые требуют устройства внутренней арматуры.
Кирпич для кладки может быть сплошной или пустотелый. Штукатурный или кладочный раствор, обволакивающий арматуру, должен быть марки не ниже 25, а во влажных условиях, а также в открытых и подземных конструкциях — не ниже 50.
Защитный слой раствора продольной арматуры должен быть в сухих условиях не менее: в столбах и балках- 20 мм, в стенах- 10 мм; в тех же элементах, находящихся на открытом воздухе — соответственно 25 и 15 мм; в элементах, находящихся во влажных помещениях, а также в резервуарах и фундаментах и т.п. — 30 и 20 мм. Для хомутов толщина защитного слоя должна быть не менее 10 мм.
Характер разрушения столбов с продольной арматурой напоминает разрушение неармированной кладки, но отличается тем, что при разрушении не происходит расслоение кладки на столбики, так как этому препятствуют хомуты.
4. Усиление кладки железобетоном.
Кроме армирования, кладка может быть усилена железобетоном в виде так называемых комплексных конструкций и стальными или железобетонными обоймами. Такие конструкции называются комплексными.
Железобетон рекомендуется располагать с внешней стороны кладки, что позволяет проконтролировать качество уплотнения уложенной бетонной смеси и является более рациональным при внецентренном сжатии и изгибе (рис. 9, а, б).
В отдельных случаях железобетон располагается внутри кладки (рис. 9, в).
Усиление каменных конструкций железобетоном применяется случаях, когда требуется значительно увеличить несущую способность сильно нагруженных элементов при центральном и внецентренном сжатии. Применение в этом случае комплексных конструкций позволяет уменьшить размеры сечений элементов.
Железобетонный скелет, пронизывающий каменную кладку, бетонируется по мере возведения каменной кладки (ярусами высотой до 1,2 м при внутреннем расположении железобетонного сердечника или на всю высоту этажа при наружном расположении железобетона).
Железобетон, а именно, его продольная арматура, воспринимает все растягивающие усилия при изгибе и внецентренном сжатии, а кладка и частично железобетон воспринимают сжимающие усилия.
Арматурные каркасы в бетоне комплексных элементов делают обычно вязаными. Толщина защитного слоя бетона для стержней продольной арматуры должна быть не менее 20 мм при их диаметре до 20 мм и 25 мм — при больших диаметрах. Расстояние в свету между этими стержнями должно быть не менее 25 мм и не менее их диаметра. Хомуты следует располагать по высоте не реже чем через 300 мм (4 ряда одинарного кирпича).
5. Усиление кирпичной кладки с помощью обойм.
5. 1. Усиление кирпичных столбов.
Одним из наиболее эффективных методов повышения несущей способности существующей каменной кладки является включение ее в обойму. В этом случае кладка работает в условиях всестороннего сжатия, что значительно увеличивает ее сопротивляемость воздействию продольной силы.
Применяются три основных вида обойм: стальные, железобетонные и армированные растворные.
Основными факторами, влияющими на эффективность обойм, являются: процент поперечного армирования обоймы (хомутами), класс бетона или марка штукатурного раствора и состояние кладки, а также схема передачи усилия на конструкцию.
С увеличением процента армирования хомутами прирост прочности кладки растет непропорционально, а по затухающей кривой.
Опытами установлено, что кирпичные столбы и простенки, имеющие трещины, а затем усиленные обоймами, полностью восстанавливают свою несущую способность.
Стальная обойма, Железобетонная обойма, Обойма из раствора
С увеличением размеров сечения (ширины) элементов при соотношении их сторон от 1:1 до 1:2,5 эффективность обойм несколько снижается, однако это снижение незначительно и практически его можно не учитывать.
Когда соотношение сторон сечения элемента превышает указанную выше величину, т.е. рассматриваются широкие простенки, стены и т.п., необходима установка других видов обойм.
При усилении кирпичных простенков необходимы дополнительные поперечные связи. Поперечные связи пропускаются через кладку и располагаются по длине на расстоянии не более 2h (h толщина стены) и не более 100 см. По высоте стены расстояние между связями должно быть не более 75см.
Железобетонная обойма имеет толщину 6-10 см (Рис. 11).
Вертикальные стержни принимаются диаметром 6-10 см, хомуты — 4-10 см. Расстояние между хомутами не должно превышать 15 см.
Рекомендуется для такой обоймы применять бетон марки не более 150 (класс по прочности не более В 12,5).
Площадь сечения продольной арматуры должна составлять не более 1,5 %.
Штукатурная обойма выполняется толщиной до 5 см из цементного раствора марки 75-100. Армируется она аналогично железобетонной обойме.
Когда из-за ряда факторов усиление с помощью двусторонних обойм не возможно, применяют устройства односторонних стенок (Рис. 12).
В этом случае в швы кладки или в установленные на растворе высверленные скважины забиваются анкеры на определенную глубину. После чего на анкеры крепится арматурная сетка.
6. Реставрация кирпичных стен с применением полимеров
В Харьковском государственном техническом университете строительства и архитектуры разработан и внедрен способ локального усиления каменных конструкций предварительно напряженной проволокой внутри кладки с предшествующими инвестированием и зачеканкой трещин полимерными композициями.
Технология проведения работ следующая. Трещины в кладке расчищаются, обеспыливаются, после чего в них инъектируется полимерная композиция. После этого в поврежденном трещиной кирпиче или вертикальном шве осуществляется локальное внутреннее обжатие.
В случае прохождения вертикальной трещины по растворному шву, на участке из двух смежных кирпичей (по обе стороны трещины) расчищаются два горизонтальных и два вертикальных растворных шва на глубину 50 мм. Затем они обматываются 5-6 витками вязальной проволоки, после чего между витками проволоки и кирпичами вбиваются клинья из обрезков стальной арматуры диаметром 6-8 мм. Благодаря этой операции, создается локальное предварительное обжатие. После выполнения операций инъектирования и обжатия трещина и разделанные швы зачеканиваются на небольшую глубину раствором, вид которого выбирается с учетом требований его цветовой и фактурной идентичности с восстанавливаемой кладкой. Нагнетание растворов в трещины производится под давлением до 0,6 МПа. Для заделки небольших трещин в кладке (до 1,5 мм) применяют полимерные растворы на основе эпоксидной смолы, а также цементно-песочные растворы с добавкой тонкомолотого песка. При более значительном раскрытии трещин применяют цементно-полимерные или цементно-песчаные растворы. Для лучшего сцепления этого раствора с полимером данная операция выполняется в период сгущения последнего. Локальное обжатие выполняется через каждые 2-3 ряда кладки вдоль трещины.
Для дополнительного усиления кладки после инвестирования и зачеканки к наружной стороне кирпичей, через которые прошла трещина, послойно приформовывается 2-3 полосы стеклоткани, пропитанной полимерной композицией. Стеклоткань не должна выходить за наружную поверхность кирпича. После затвердения поверхность стеклопластика может быть окрашена краской под цвет кирпича. Стеклопластик играет роль армирования, воспринимающего растягивающие усилия. Стекложгут может применяться и вместо стального армирования. Во избежание возникновения растяжения стеклопластик по глубине следует располагать в ядре сечения усиливаемого камня.
Приведенная технология успешно применяется в Харькове при реставрации (реконструкции) и усилении кирпичных стен зданий и сооружений.
Заключение.
В реферате были отражены вопросы, касательно внутренней структуры и динамики кладки; касательно проектирования армокаменных конструкций, в соответствии с действующими нормативными документами; вопросы о исследовании кладки на прочность и другие предложения по усилению кирпичной кладки.
Существует не одна причина деформации кладки, но самая главная и непосредственно влекущая разрушение — это неоднородность раствора в швах, неравномерное заполнение швов. В результате чего образуются полости с большой концентрацией напряжения, являющегося причиной различных деформаций кирпича в кладке.
Для повышения несущей способности кладки на стадии проектирования применяют армирование стен. Причем поперечное армирование применяют для повышения несущей способности элементов, работающих на сжатие, а продольное для элементов, работающих на растяжение при изгибе.
Самым востребованным способом для повышения несущей способности существующей кладки является усиление кладки с помощью обойм, которые бывают различные по своему виду и различны в способах креплении с кладкой.
Сегодня существует ряд способов усиления каменных конструкций, некоторые из которых являются более востребованными. Результаты работ строительных институтов России показывают новые подходы к решению таких задач. И возможно скоро появятся новые передовые технологии по усилению каменной кладки.
1. Бедов А.И., Щепетьева Т.А. Проектирование каменных и армокаменных конструкций. -М: АСВ, 2003г. С. 49 — 60, 112 — 131.
2. Житушкин В.Г. Усиление каменных и деревянных конструкций. М: 2005г. С. 5 – 22.
3. Пшеничный Г.Н. К вопросу о «саморазрушении» бетона. Бетон и железобетон, 2006 — №4. С. 15 – 18.
4. Карманова И. Реставрация кирпичных стен с применением полимеров. Будмайстер, 2002. №7. C.17
5. Электронный ресурс. Режим доступа: http://www.stroy-info.ruarticles_id89.htm