Особенности годового хода приземной температуры воздуха в разных частях Земли по данным ОА Гидрометцентра РФ

масс с океана летом понижает температуру и тем самым несколько уменьшает годовую амплитуду.

Континентальный климат в среднем годовом холоднее морского.

По мере продвижения в глубь Евразии с запада на восток средние температуры самого теплого и самого холодного месяцев, средние годовые температуры и годовые амплитуды температуры меняются так, как это показано ниже (табл. 1) для нескольких мест на 52-й параллели:

Таблица 1.

Особенности распределения средних температур и годовых амплитуд воздуха в зависимости от континентальности климата

Город

Долгота

Январь, °С

Июль, °С

Год, °С

Амплитуда, °С

Трейли 10°З +7 +15 +10 8
Мюнстер 7°В +1 +17 +9 16
Варшава 21°В -5 +18 +7 23
Курск 36°В -10 +19 +5 29
Оренбург 55°В -15 +22 +3 37
Рубцовск 80°В -18 +22 +3 40
Нерчинск 116°В -30 +23

-2

53

Из данных таблицы хорошо видны возрастание летних и падение зимних температур, убывание средней годовой темпера­туры и возрастание годовой амплитуды в направлении с запада на восток [5].

3. АНАЛИЗ ГОДОВОГО ХОДА ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА В СЕВЕРНОМ ПОЛУШАРИИ (1997 ГОД)

Годовой ход приземной температуры воздуха зависит от таких факторов как характер деятельной поверхности, географическая широта местности, высота места над уровнем моря, степень континентальности климата, условия общей циркуляции атмосферы и др.

Так, например, на широте 60° в районе г. Санкт – Петербурга (рис. 4) амплитуда годовых колебаний приземной температуры воздуха по сравнению с Западно-Сибирской равниной (рис. 5) меньше, что обусловлено особенностью перемещения воздушных масс. На побережье господствуют морские воздушные массы, когда как в Западно-Сибирской равнине климат является континентальным. Этот факт влияет и на среднесуточные температуры. Внутри континента отмечаются значительно более низкие температуры в январе (до – 36° С) по сравнению с побережьем (минимум составляет — 16° С), резкие межсуточные колебания. Летом же характер распределения температуры воздуха несколько иной: в Санкт – Петербурге среднесуточная температура в июле колеблется от 15 до 25° С, в Западно – Сибирской равнине – от 8 до 20° C. Более низкие температуры на равнине связаны с вторжением холодных масс из Антарктики, а повышенные в городе как результат воздействия так называемого

Минимальные значения амплитуды приземной температуры воздуха наблюдаются над водной поверхностью. На рис. 6 видно, что над Атлантическим океаном годовая изменчивость температуры воздуха незначительна. Летом водная поверхность большую часть приходящего тепла расходует на нагревание более глубоких слоев, зимой же накопленное тепло отдается атмосфере. Эти процессы являются причиной того, что в январе над океанами в северном полушарии наблюдаются температуры выше, чем над сушей (особенно внутри материков); в июле приземный слой воздуха над океаном нагревается меньше. Также необходимо уделить внимание тому, что над океанами наблюдается плавный ход температуры в течение года, так как здесь не сказывается неоднородность подстилающей поверхности как на суше.

Год 1

Рис. 4. Температура воздуха в приземном слое (среднесуточная).

Санкт-Петербург. 1997 г. 60 ° с.ш., 30 ° в.д.

В горах температура убывает с высотой, также сказывается характер подстилающей поверхности, который в горных районах имеет более сложный характер, чем на равнине. На рис. 7, где показано, что на высоте около 1000-2000 м. приземная температура воздуха испытывает большие колебания, особенно зимой.

Огромное влияние на распределение приземной температуры воздуха оказывает приток солнечной радиации, а, следовательно, и географическая широта места. В южных районах северного полушария, где приток солнечной радиации в течение года имеет меньшую сезонную зависимость, амплитуда годовых колебаний температуры воздуха меньше. На рис. 8, 9 показано распределение температуры воздуха в приземном слое на широте 30° на побережье (г. Новый Орлеан) и в глубине материка (Гималаи) соответственно. Здесь видно, что разница температур между зимой (январь) и летом (июль) меньше по сравнению с более высокими широтами (рис., 4, 5, 7), ход среднесуточных температур более плавный. Величина притока солнечной радиации, естественно, сказывается и на температурный режим. На основании графиков можно сказать, что в южных районах среднемесячные температуры воздуха больше, чем в северных.

Год 2

Рис. 5. Температура воздуха в приземном слое (среднесуточная).

Западно — Сибирская равнина. 1997 г. 60° с.ш., 75 ° в.д.

В районе г. Новый Орлеан также сказывается сезонная циркуляция атмосферы. В январе под действием холодных арктических масс температура может опускаться до 0° С (рис. 8).

В горных районах такая зависимость не наблюдается (рис. 7).

Особенно хорошо видна зависимость температуры воздуха в приземном слое от географической широты места над океанами (рис. 6, 10, 11).

Чем южнее расположена область, тем выше оказываются температуры воздуха.

Год 3

Рис. 6. Температура воздуха в приземном слое (среднесуточная).

Север Атлантического океана 1997 г. 60 ° с.ш., 330° в.д.

Год 4

Рис. 7. Температура воздуха в приземном слое (среднесуточная).

Северная Америка 1997 г. 60° с.ш., 235° в.д.

Год 5

Рис. 8. Температура воздуха в приземном слое (среднесуточная).

Гималаи.

1997 г. 30° с.ш., 85° в.д.

Год 6

Рис. 9. Температура воздуха в приземном слое (среднесуточная).

Новый Орлеан. 1997 г. 30° с.ш., 270 °в.д.

Год 7

Рис. 10. Температура воздуха в приземном слое (среднесуточная).

Атлантический океан. 1997 г. 30° с.ш., 320 ° в.д.

Год 8

Рис. 11. Температура воздуха в приземном слое (среднесуточная).

Тихий океан. 1997 г. 30° с.ш., 180 ° в.д.

Взятые исходные данные для расчета графиков, а также сводные графики температур воздуха для каждого отобранного месяца по соответствующим параллелям (60°, 30° с.ш.) даны в приложении.

ЗАКЛЮЧЕНИЕ

Основные результаты данной работы заключаются

  1. Описаны факторы, влияющие на годовой ход приземной температуры воздуха и его изменения.

  2. Произведен анализ некоторых научных работ, посвященных проблеме теплового режима атмосферы.

  3. Произведен собственный анализ распределения приземной температуры воздуха во времени и сопоставленный с данными теоретических исследований, на основании которого можно сделать следующие выводы:

    1. Ход температуры воздуха у поверхности земли испытывает годовые колебания, которые в первую очередь зависят от характера нагревания подстилающей поверхности (деятельного слоя) в разные сезоны года, что связано с притоком солнечной радиации.

    2. На годовой ход температуры накладываются также такие естественные факторы, как высота места над уровнем моря, степень континентальности климата, процессы циркуляции атмосферы и др.

    3. В последнее время возрастает влияние антропогенного фактора, воздействующего на тепловой режим атмосферы, который приводит к аномалиям в годовом ходе приземной температуры воздуха.

Полученные результаты не являются окончательным, с течением времени они могут дополняться, изменяться, корректироваться. В дальнейшем имеет смысл провести более детальное изучение данного вопроса, целесообразно будет включить мнения других авторов научных трудов, посвященных данной тематике.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

[Электронный ресурс]//URL: https://drprom.ru/referat/zavisimost-temperaturyi-vozduha-ot-geograficheskoy-shirotyi/

  1. Городецкий О.А., Гуральник И.И., Ларин В.В. Метеорология, методы и технические средства наблюдений. Л.: Гидрометеоиздат, 1984. 321 с.

  2. Хромов С.П., Петросянц М.А. Метеорология и климатология. Изд-во Моск. ун-та, 2001. 526 с.

  3. Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы. Л.: Гидрометеоиздат, 1984. 751 с.

  4. Матвеев Л.Т., Баринова С.А. Влияние антропогенных факторов на термический и влажностный режим большого города // Метеорология на рубеже веков: итоги и перспективы развития. Тез. докл. Всеросс. науч. конф. Пермь, 2000. С. 41-42.

  5. Будыко М.И. Тепловой баланс земного шара // Изменения климата. Л.: Гидрометеоиздат, 1980. С. 122-150.

  6. Севастьянов В.В. Косвенные методы исследования тепловых ресурсов в горных районах // Современная география и окружающая среда. Тез. докл. Всеросс. науч. конф. Казань, 1996. С. 51-54.

  7. Справочник по климату СССР. Температура воздуха и почвы. Л.: Гидрометеоиздат, 1965. Вып. 28. Ч. IV. 234 с.

  8. Урманова А.Г., Наумов Э.П., Николаев А.А., Переведенцев Ю.П., Верещагин М.А., Шанталинский К.М. Проявления современного потепления климата Земли на территории Татарстана // Сборник науч. трудов. Казань, 1998. С. 111-132.

  9. Каган Б.А., Рябченко В.А., Чаликов Д.В. Параметризация деятельного слоя в модели крупномасштабного взаимодействия океана и атмосферы // Метеорология и гидрология. 1979. №12. С. 67-75.

  10. Кибель И.А. Распределение температуры в атмосфере Земли // ДАН СССР. 1973. Т. 39, № 1.

  11. Ландсберг Г.Е. Климат города. Л.: Гидрометеоиздат, 1983. 248 с.

ПРИЛОЖЕНИЕ