Виды термообработки алюминиевых сплавов

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный университет технологий и управления имени К.Г. Разумовского»

Филиал ФГБОУ ВПО «МГУТУ имени К.Г.Разумовского» в г. Мелеузе (Республика Башкортостан), Контрольная работа

Виды термообработки алюминиевых сплавов

Выполнил: Ильметов А.У.

Проверил: Айсарина А.А

Мелеуз 2015г

1. Назовите основные марки быстрорежущих инструментальных сталей. Укажите режимы их термической обработки

Быстрорежущая сталь

Стали получили свое название за свойства. В следствии высокой теплостойкости (550…650oС), изготовленные из них инструменты могут работать с достаточно высокими скоростями резания. Стали содержат 0,7…1,5 % углерода, до 18 % основного легирующего элемента — вольфрама, до 5 % хрома и молибдена, до 10 % кобальта

Добавление ванадия повышает износостойкость инструмента, но ухудшает шлифуемость. Кобальт повышает теплостойкость до 650oС и вторичную твердость HRC 67…70.

Микроструктура быстрорежущей стали в литом состоянии имеет эвтектическую структурную составляющую. Для получения оптимальных свойств инструментов из быстрорежущей стали необходимо по возможности устранить структурную неоднородность стали — карбидную ликвацию. Для этого слитки из быстрорежущей стали подвергаются интенсивной пластической деформации (ковке).

При этом происходит дробление карбидов эвтектики и достигается более однородное распределение карбидов по сечению заготовки.

Термообработка быстрорежущих сталей

Затем проводят отжиг стали при температуре 860…900oС. Структура отожженной быстрорежущей стали — мелкозернистый (сорбитообразный) перлит и карбиды, мелкие эвтектоидные и более крупные первичные. Количество карбидов около 25 %. Сталь с такой структурой хорошо обрабатывается резанием. Подавляющее количество легирующих элементов находятся в карбидной фазе. Для получения оптимальных свойств стали в готовом инструменте необходимо при термической обработке обеспечить максимальное насыщение мартенсита легирующими элементами. При закалке быстрорежущие стали требуют нагрева до очень высоких температур, около 1280oС. Нагрев осуществляют в хорошо раскисленных соляных ваннах BaCl2, что улучшает равномерность прогрева и снижает возможность обезуглероживания поверхности. Для снижения термических фазовых напряжений нагрев осуществляют ступенчато: замедляют нагрев при температурах 600…650oС и при 850…900oС.

12 стр., 5800 слов

Чугун и сталь — важнейшие сплавы железа

... + ЗС с образованием феррита и графита). Процесс образования в чугуне (стали) графита называют графитизацией. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного ...

График режима термической обработки быстрорежущей стали

Охлаждение от закалочной температуры производится в масле. Структура стали после закалки состоит из легированного, очень тонкодисперсного мартенсита, значительного количества (30…40 %) остаточного аустенита и карбидов вольфрама. Твердость составляет 60…62 HRC. Наличие аустенита остаточного в структуре закаленной стали ухудшает режущие свойства.

Для максимального удаления аустенита остаточного проводят трехкратный отпуск при температуре 560oС. При нагреве под отпуск выше 400oС наблюдается увеличение твердости. Это объясняется тем, что из легированного остаточного аустенита выделяются легированные карбиды. Аустенит при охлаждении от температуры отпуска превращается в мартенсит отпуска, что вызывает прирост твердости. Увеличению твердости содействуют и выделившиеся при температуре отпуска мелкодисперсные карбиды легирующих элементов. Максимальная твердость достигается при температуре отпуска 560oС.

После однократного отпуска количество аустенита остаточного снижается до 10%. Чтобы уменьшить его количество до минимума, необходим трехкратный отпуск.

Твердость стали после отпуска составляет 64…65 HRC. Структура стали после термообработки состоит из мартенсита отпуска и карбидов.

При термической обработке быстрорежущих сталей применяют обработку холодом. После закалки сталь охлаждают до температуры — 80 … — 100oС, после этого проводят однократный отпуск при температуре 560oС для снятия напряжений.

Иногда для повышения износостойкости быстрорежущих сталей применяют низкотемпературное цианирование.

Основными видами режущих инструментов из быстрорежущей стали являются резцы, сверла, долбяки, протяжки, метчики машинные, ножи для резки бумаги. Часто из быстрорежущей стали изготавливают только рабочую часть инструмента.

сталь алюминиевый сплав термический

2. Приведите виды термообработки алюминиевых сплавов и укажите влияние примесей на их свойства. Проведите анализ диаграммы Аl-Cu

Отжиг

Отжиг слитков или деформированных полуфабрикатов применяется в тех случаях, когда возникшее по тем или иным причинам неравновесное состояние сплава обусловливает появление нежелательных свойств, чаще всего пониженной пластичности.

Применительно к алюминиевым сплавам наиболее распространены три разновидности неравновесных состояний.

1. Неравновесное состояние, свойственное литым сплавам.

2. Неравновесное состояние, вызванное пластической деформацией, особенно холодной.

3. Неравновесное состояние, являющееся результатом предыдущей упрочняющей обработки (закалки и старения).

В соответствии с тремя рассмотренными выше разновидностями неравновесных состояний, наблюдающихся у алюминиевых сплавов, различают три разновидности отжига:

  • гомогенизирующий отжиг слитка, или гомогенизация;
  • рекристаллизационный и дорекристаллизационный отжиг деформированных изделий после обработки давлением;
  • гетерогенизационный отжиг, как правило, термически упрочненных полуфабрикатов (дораспад пересыщенного твердого раствора и коагуляция выделившихся интерметаллидов) с целью разупрочнения.

Закалка

Цель закалки — получить в сплаве предельно неравновесное фазовое состояние (пересыщенный твердый раствор с максимальным содержанием легирующих элементов).

16 стр., 7527 слов

Металлургические процессы при сварке низкоуглеродистых, низколегированных ...

... сварке. При сварке низкоуглеродистых сталей на участке неполного расплавления металл нагревается в интервале температур ... состоянии и в меньшем объеме после нормализации или закалки с отпуском (термоупрочнение). Механические свойства этих сталей ... некоторых случаях конкретные условия работы конструкций допускают снижение отдельных ... шлаком и газовой фазой. При сварке рассматриваемых сталей состав металла ...

Такое состояние обеспечивает, с одной стороны, непосредственное повышение (по сравнению с равновесным состоянием) твердости и прочности, а с другой стороны, возможность дальнейшего упрочнения при последующем старении.

Старение

Старение представляет собой выдержку закаленного сплава при некоторых (относительно низких) температурах, при которых начинается распад пересыщенного твердого раствора или в твердом растворе происходят структурные изменения, являющиеся подготовкой к распаду. Цель старения — дополнительное повышение прочности закаленных сплавов.

Диаграмма

Сильная пересыщенность твердого раствора в закаленном сплаве обусловливает его термодинамическую нестабильность. Распад твердого раствора, приближающий фазовое состояние к равновесному, а следовательно, к уменьшению свободной энергии сплава, является самопроизвольно идущим процессом.

Состояния системы медь—алюминий подробно исследована во всей области концентраций сплавов. Состав жидкой фазы в эвтектической точке соответствует 8,5 вес.% А1. При температурах 1036° и 1022° протекают перитектические реакции. Фаза х существует только в области высоких температур 1036—963°. Фаза в кристаллизуется из расплава по кривой с максимумом, который соответствует температуре 1048° и составу сплава, содержащего 12,4 вес.% Аl. В твердом состоянии имеет место несколько эвтектоидных и перитектоидпых превращений. При температуре 963° Фаза х распадается. В эвтектоидкой точке содержание алюниния соответствует 15,4 вес. %. Концентрационные пределы области гомогенности а2-фазы точно не установлены. Существование а2-фазы объясняет аномальный ход температурной кривой удельной теплоемкости при температуре около 300°, наблюдаемый в однофазных (а) и двухфазных сплавах.

Фаза a — твердый раствор на основе меди охватывает широкую область составов (до 9 вес. % Al), причем с понижением температуры растворимость алюминия в меди повышается. По данным измерения микротвердости при температурах 500, 700, 800 и 900° она составляет 9,4; 8,8; 8,2 и 7,8 вес.% соответственно. При 1037° растворимость Al в твердой меди составляет 7,4 вес.%

Фаза а имеет гранецентрированную кубическую решетку, аналогичную решетке чистой меди, параметр которой увеличивается с повышением содержания алюминия. Фаза в представляет собой твердый раствор на основе соединения Си3А1 (12,44 вес. % А1).

Сплав системы Al-Cu. Из диаграммы видно, что при содержании меди от 0 до 53% имеет место простая эвтектическая система Аl(б) — Аl2Cu(и) с эвтектикой при температуре 548°С и содержании 33% Cu. Максимальная растворимость (при эвтектической температуре) меди в б-твердом растворе — 57%. Растворимость меди уменьшается с понижением температуры и при температуре 300°С составляет 0,5%. Нерастворившаяся медь находится в равновесном состоянии в виде фазы А2Cu. При средних температурах в результате распада пересыщенного твердого раствора образуются метастабильные промежуточные фазы (и’ и и»).

3. Чем обусловлена экономическая эффективность применения различных неметаллических материалов

Пластмассы различных видов нашли широкое применение в машиностроении благодаря своим высоким антикоррозионным и механическим свойствам. Детали, изготовленные из пластмасс, имеют хороший внешний вид, блестящую гладкую поверхность различных цветов.

9 стр., 4013 слов

Сплавы на основе меди

... медь совершенно необходима всему живому. Медь и ее сплавы Медь - металл характерного красного цвета, который обладает след. св-ми: Плотность 8940 кг/м 3 Температура плавления 1083 ? С Температура ... давлением в горячем и холодном состоянии, сварке, пайке и лужению. Однофазный в-раствор при температуре примерно 453 ? С имеет упорядоченное расположение атомов меди и цинка и обозначается в'. Эта фаза, ...

Пластмассы это материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.

Пластмассы состоят из связующего вещества и наполнителя. Связующими служат смолы, а наполнителем различные вещества: древесная мука, волокнистые материалы, обрезки или листы бумаги, ткани и т.п.

Таким образом, к неметаллическим материалам относятся полимерные материалы органические и неорганические: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика.

Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов. Применение неметаллических материалов обеспечивает значительную экономическую эффективность. Основой неметаллических материалов являются полимеры, главным образом синтетические.

Знание строения и закономерностей в изменении свойств неметаллических материалов помогает специалистам рационально использовать их в технических конструкциях.

Одной из основных особенностей в строении неметаллических материалов является преобладание ионной либо ковалентной связи между частицами. Отсутствие свободных электронов в виде электронного газа, как это имеет место у металлов, в значительной степени определяет отличие их физических, химических и механических свойств от свойств металлов.

Такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химическая стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Они находят все большее применение в различных отраслях машиностроения.

4. Как изменяется микроструктура металла после обработки давлением

Обработка металлов давлением основана на их способности в определенных условиях пластически деформироваться в результате воздействия на деформируемое тело (заготовку) внешних сил.

Если при упругих деформациях деформируемое тело полностью восстанавливает исходные форму и размеры после снятия внешних сил, то при пластических деформациях изменение формы и размеров, вызванное действием внешних сил, сохраняется и после прекращения действия этих сил.

Упругая деформация характеризуется смещением атомов относительно друг друга на величину, меньшую межатомных расстояний, и после снятия внешних сил атомы возвращаются в исходное положение. При пластических деформациях атомы смещаются относительно друг друга на величины, большие межатомных расстояний, и после снятия внешних сил не возвращаются в свое исходное положение, а занимают новые положения равновесия.

4 стр., 1563 слов

Деформация и разрушенние металла

... - фазовыми или структурными напряжениями. 5. Деформация и разрушение кристаллов 5.2. Упругая и пластическая деформация металлов Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства тела устраняются после прекращения действия внешних ...

В зависимости от температурно-скоростных условий деформирования различают холодную и горячую деформацию.

Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла. При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом).

Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).

Изменения, внесенные холодной деформацией в структуру и свойства металла, не необратимы. Они могут быть устранены, например, с помощью термической обработки (отжигом).

В этом случае происходит внутренняя перестройка, при которой за счет дополнительной тепловой энергии, увеличивающей подвижность атомов, в твердом металле без фазовых превращений из множества центров растут новые зерна, заменяющие собой вытянутые, деформированные зерна. Так как в равномерном температурном поле скорость роста зерен по всем направлениям одинакова, то новые зерна, появившиеся взамен деформированных, имеют примерно одинаковые размеры по всем направлениям. Явление зарождения и роста новых равноосных зерен взамен деформированных, вытянутых, происходящее при определенных температурах, называется рекристаллизацией. Для чистых металлов рекристаллизация начинается при абсолютной температуре, равной 0,4 абсолютной температуры плавления металла. Рекристаллизация протекает с 34б определенной скоростью, причем время, требуемое для рекристаллизации, тем меньше, чем выше температура нагрева деформированной заготовки. При температурах ниже температуры начала рекристаллизации, наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нагрева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании. Остаточные напряжения создают системы взаимно уравновешивающихся сил и находятся в заготовке, не нагруженной внешними силами. Снятие остаточных напряжений при возврате почти не изменяет механических свойств металла, но влияет на некоторые его физико-химические свойства. Горячей деформацией называют деформацию, характеризующуюся соотношением скоростей деформирования и рекристаллизации, при котором рекристаллизация успевает произойти во всем объеме заготовки и микроструктура после обработки давлением оказывается равноосной, без следов упрочнения.

Чтобы обеспечить условия протекания горячей деформации, приходится с увеличением ее скорости повышать температуру нагрева заготовки (для увеличения скорости рекристаллизации).

Если металл по окончании деформации имеет структуру, не полностью рекристаллизованную, со следами упрочнения, то такая деформация называется неполной горячей деформацией. Неполная горячая деформация приводит к получению неоднородной структуры, снижению механических свойств и пластичности.

13 стр., 6142 слов

Металлы. Свойства металлов

... электронами. Таким образом, металлическая связь является свойством не отдельных частиц, а их агрегатов. Химические свойства металлов. Основным химическим свойством металлов является способность их атомов легко ... следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру. По плотности металлы условно подразделяются на две большие группы: ...

При горячей деформации сопротивление деформированию примерно в 10 раз меньше, чем при холодной деформации, а отсутствие упрочнения приводит к тому, что сопротивление деформированию (предел текучести) незначительно изменяется в процессе обработки давлением. Этим обстоятельством объясняется в основном то, что горячую обработку применяют для изготовления крупных деталей, так как при этом требуются меньшие усилия деформирования (менее мощное оборудование).

При горячей деформации пластичность металла выше, чем при холодной деформации.

Влияние холодной деформации на свойства металла можно использовать для получения наилучших эксплуатационных свойств деталей, а управление изменением свойств в требуемом направлении и на желаемую величину может быть достигнуто выбором рационального сочетания холодной и горячей деформации, а также числа и режимов термических обработок в процессе изготовления детали.

Список использованной литературы

[Электронный ресурс]//URL: https://drprom.ru/kontrolnaya/termoobrabotka-alyuminievyih-splavov/

1. Замятин В.К. Технология и оснащение сборочного производства машиноприборостроения: Справочник. -М. Машиностроение, 1995. — 608 с.

2. Кузьмин Б.А. Технология металлов и конструкционные материалы, М., Машиностроение, 1981.

3. Лахтин Ю.М., Леонтьева В.П.. Материаловедение. М.:Машиностроение, 1990

4. Мартынов Э.З Технологии отрасли, часть 2, Конспект лекций, Новосибирск, 2002 г., 75 с.

5. Мартынов Э.З., Никитин Ю.В. Технологии отрасли, часть 1, Конспект лекций, Новосибирск, 2000 г., 48 с.; изд 2-е 2005 г., 64 с.

6. Махаринский Е.И., Горохов В. А. Основы технологии машиностроения: Учебник. -Мн.: Высш. шк., 1997.-432с.