Аморфные материалы: их свойства, применение в современной технике, способы получения

Реферат

Долгое время казалось, что самое интересное в Физике — это исследования микромира и микрокосмоса. Именно там пытались найти ответы на наиболее важные, фундаментальные вопросы, объясняющие устройство окружающего мира. А сейчас образовался третий фронт исследований — изучение твёрдых тел.

Почему же так важно исследовать твёрдые тела?

Огромную роль, конечно, играет здесь практическая деятельность человека. Твёрдые тела — это металлы и диэлектрики, без которых немыслима электротехника, это — полупроводники, лежащие в основе современной электроники, магниты, сверхпроводники, конструкционные материалы. Словом, можно утверждать, что научно-технический прогресс в значительной мере основан на использовании твёрдых тел.

Но не только практическая сторона дела важна при их изучении. Сама внутренняя логика развития науки — физики твёрдого тела — привела к пониманию важности коллективных свойств больших систем.

Твёрдое тело состоит из миллиарда частиц, которые взаимодействуют между собой. Это обусловливает появление определённого порядка в системе и особых свойств всего количества микрочастиц. Так, коллективные свойства электронов определяют электропроводность твёрдых тел, а способность тела поглощать тепло — теплоёмкость — зависит от характера коллективных колебаний атомов при тепловом движении. Коллективные свойства объясняют все основные закономерности поведения твёрдых тел.

Структура твёрдых тел многообразна. Тем не менее, их можно разделить на два больших класса: кристаллы и аморфные тела.

1. Общая характеристика аморфных тел

Не все твёрдые тела — кристаллы. Существует множество аморфных тел.

У аморфных тел нет строгого порядка в расположении атомов. Только ближайшие атомы — соседи располагаются в некотором порядке. Но строгой направленности по всем направлениям одного и того же элемента структуры, которая характерна для кристаллов в аморфных телах, нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц SiO2, может быть как в кристаллической, так и в аморфной форме (кремнезем).

Кристаллическую форму кварца схематически можно представить в виде решётки из правильных шестиугольников. Аморфная структура кварца также имеет вид решётки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти и семиугольники.

В 1959 г. английский физик Д. Бернал провёл интересные опыты: он взял много маленьких пластилиновых шариков одинакового размера, обвалял их в меловой пудре и спрессовал в большой ком. В результате шарики деформировались в многогранники. Оказалось, что при этом образовывались преимущественно пятиугольные грани, а многогранники в среднем имели 13,3 грани. Так что какой-то порядок в аморфных веществах определённо есть.

7 стр., 3330 слов

T плавления льда. Плавление тел

... объясните его результаты. Прочитайте параграф «Аморфные тела. Плавление аморфных тел». Подготовьте по нему доклад. Плавление -- переход тела из кристаллического твёрдого состояния в жидкое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого ...

К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др. В отличие от кристаллических веществ аморфные вещества изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Аморфные тела занимают промежуточное положение между кристаллическими твёрдыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Понимание структуры твёрдых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые тела и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Проследим за куском смолы, который лежит на гладкой поверхности. Постепенно смола по ней растекается, и, чем выше температура смолы, тем быстрее это происходит.

Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры тел у аморфных тел, в отличие от кристаллических, нет.

При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Под действием механических нагрузок или при изменении температуры аморфные тела могут закристаллизоваться. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Главный признак аморфного (от греческого «аморфос» — бесформенный) состояние вещества — отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

5 стр., 2431 слов

Аморфные металлы

... ленты. Самыми эффективными способами промышленного выработки аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) ... вещества оказываются замороженными в тех положениях, которые они занимали, будучи в жидком состоянии. Аморфная ... охлаждаемого тела (холодильника). Различие состоит в том, что в методах центробежной закалки и закалки ...

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.

2. Аморфные металлические сплавы

Аморфные металлические сплавы (металлические стёкла) — это металлические твёрдые вещества, в которых отсутствует дальний порядок в расположении атомов. Это придаёт им целый ряд существенных отличий от обычных кристаллических металлов.

Аморфные сплавы были впервые получены в 1960 г. П. Дувезом, однако их широкие исследования и промышленное использование начались спустя десятилетие — после того, как в 1968 г. был изобретён метод спиннингования. В настоящее время известно несколько сотен аморфизирующихся систем сплавов, достаточно подробно изучены структура и свойства металлических стёкол, расширяется область их применения в промышленности.

2.1 Методы получения аморфных сплавов

Сверхвысокие скорости охлаждения жидкого металла для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 106 град/с. Известны методы катапультирования капли на холодную пластину, распыление струи газом или жидкостью, центрифугирование капли или струи, расплавление тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла, сверхбыстрое охлаждение из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.

Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращающихся барабанов или прокатку расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.

Рис.1. Методы получения тонкой ленты путем закалки из расплава: а) центробежная закалка; б) закалка на диске; в) прокатка расплава; г) центробежная закалка; д) планетарная закалка

На рис.1 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника).

Различие состоит в том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны.

Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи. Для каждого метода имеются свои ограничения по размерам лент, поскольку есть различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов. Если при центробежной закалке ширина ленты составляет до 5 мм, то прокаткой получают ленты шириной 10 мм и более.

Метод закалки на диске, для которого требуется более простая аппаратура, позволяет в широких пределах изменять ширину ленты в зависимости от размеров плавильных тиглей. Данный метод позволяет изготавливать как узкие ленты шириной 0,1-0,2 мм, так и широкие — до 100 мм, причем точность поддержания ширины может быть ± 3 мкм. Разрабатываются установки с максимальной вместимостью тигля до 50 кг.Во всех установках для закалки из жидкого состояния металл быстро затвердевает, растекаясь тонким слоем по поверхности вращающегося холодильника. При постоянстве состава сплава скорость охлаждения зависит от толщины расплава и характеристик холодильника. Толщина расплава на холодильнике определяется скоростью его вращения и скоростью истечения расплава, т. е. зависит от диаметра сопла и давления газа на расплав. Большое значение имеет правильный выбор угла подачи расплава на диск, позволяющий увеличить длительность контакта металла с холодильником. Скорость охлаждения зависит также от свойств самого расплава: теплопроводности, теплоемкости, вязкости, плотности.

6 стр., 2725 слов

Строение металлов и сплавов, их кристаллизация

... Кинетическая кривая кристаллизации кристаллизация металл сплав Скорость всего процесса кристаллизации количественно определяется двумя величинами: скоростью зарождения центров кристаллизации и скоростью роста кристаллов (рис.3.5). Зависимость скорости кристаллизации (СК) и скорости зарождения центров кристаллизации (ЧЦ) от ...

Для получения тонкой аморфной проволоки используют разные методы вытягивания волокон из расплава.

Рис.2 Методы получения тонкой проволоки, закаленной из расплава: а) протягивание расплава через охлаждающую жидкость (экструзия расплава); б) вытягивание нити из вращающегося барабана; в) вытягивание расплава в стеклянном капилляре; 1 — расплав; 2 — охлаждающая жидкость; 3 — стекло; 4 — форсунка; 5 — смотка проволоки

В первом методе (рис.2, а) расплавленный металл протягивается в трубке круглого сечения через водный раствор солей.

Во втором (рис.2, б) — струя расплавленного металла падает в жидкость, удерживаемую центробежной силой на внутренней поверхности вращающегося барабана: затвердевшая нить сматывается затем из вращающейся жидкости. Известен метод, состоящий в получении аморфной проволоки путем максимально быстрого вытягивания расплава в стеклянном капилляре (рис.2, в).

Этот метод также называют методом Тейлора. Волокно получается при протягивании расплава одновременно со стеклянной трубкой, при этом диаметр волокна составляет 2-5 мкм. Главная трудность здесь состоит в отделении волокна от покрывающего его стекла, что, естественно, ограничивает составы сплавов, аморфизируемых данным методом.

2.2 Механические свойства

Первая особенность механических свойств аморфных сплавов, которую следует отметить, — это их очень высокая прочность. Как известно, теоретическая прочность, то есть напряжение, необходимое для разрыва всех межатомных связей в плоскости разрушения, составляет 1~10E? (E — модуль Юнга).

Прочность реальных металлов на два-три порядка ниже — лишь прочность нитевидных кристаллов (усов) приближается к теоретической.

Для аморфных сплавов также типичны близкие к теоретической прочности значения в0,040,05Еу?…. Это обусловлено, во-первых, более низкими по сравнению с кристаллами модулями упругости, а во-вторых, спецификой механизмов деформации и разрушения. Коэффициент Пуассона аморфных сплавов обычно близок к 0,4 — это промежуточное значение между кристаллическими металлами (0,3) и жидкостью (0,5).

Довольно неожиданным свойством аморфных сплавов является их способность к пластическому течению. В кристаллах, как известно, пластическое поведение обеспечивается движением дислокаций. Но в теле без трансляционной симметрии дислокации в классическом понимании невозможны, и следовало бы ожидать, что аморфные вещества будут абсолютно хрупкими. Неорганические стёкла ведут себя именно так, однако в аморфных металлах пластическая деформация всё-таки происходит.

20 стр., 9823 слов

Сплавы на основе алюминия

... По удельной прочности некоторые алюминиевые сплавы ( = 23 км) приближаются или соответствуют высокопрочным сталям ( = 27 км). Большинство алюминиевых сплавов имеют хорошую коррозионную стойкость. Алюминиевые сплавы пластичнее магниевых и ... от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твердость алюминия (табл. 1.1). Табл. 1.1 Механические ...

Способность к деформации связана, как и для кристаллов, с коллективизированным ненаправленным характером металлической связи. При этом удаётся реализовать ту высокую прочность, которая заложена в аморфных телах при условии подавления хрупкого разрушения при напряжениях меньше предела текучести. Пластическая деформация аморфных сплавов может быть гомогенной, когда деформируется каждый элемент объёма и образец испытывает однородную деформацию, и негомогенной, когда пластическое течение локализуется в тонких полосах сдвига.

Гомогенная деформация происходит при высоких температурах (близких к температуре кристаллизации) и низких напряжениях (0,01Gф<, где G — модуль сдвига).

При этом скорость деформации пропорциональна приложенному напряжению. Вязкость з по мере развития деформации непрерывно растёт, и с повышением температуры этот рост ускоряется по аррениусовскому закону. Степень пластической деформации при гомогенном течении практически неограничена, и при правильно подобранных условиях можно добиться эффекта сверхпластичности с деформацией в сотни процентов. По-видимому, гомогенная деформация происходит за счёт непрерывной релаксации структуры, хотя она может протекать и после предварительного отжига при более высокой температуре.

В результате после гомогенной деформации сплавы обычно резко охрупчиваются. Негомогенное пластическое течение происходит при низких температурах и высоких напряжениях (кр0,8TT<0,02Gф>

— . Оно мало чувствительно к скорости нагружения и практически не сопровождается деформационным упрочнением. В отличие от гомогенной деформации, негомогенная вызывает уменьшение степени порядка в аморфной структуре. При негомогенной деформации течение сосредоточено в полосах сдвига, число которых определяет пластичность сплава. Пластичность сильно меняется в зависимости от схемы нагружения. При растяжении она обычно невелика — разрушение происходит после деформации в 1…2 %, в то время как при прокатке можно достигнуть деформаций в 50…60 %, а при изгибе радиус может быть сопоставим с толщиной ленты (30…40 мкм).

Разрушение аморфных сплавов, как и обычных кристаллических, может быть хрупким и вязким. Хрупкое разрушение происходит сколом без внешних следов макроскопического течения и по плоскостям, перпендикулярным оси растяжения. Вязкое разрушение происходит после или одновременно с пластической деформацией. Оно развивается по плоскостям, где действуют максимальные касательные напряжения. Характерной особенностью вязкого разрушения аморфных сплавов является наличие на поверхности разрушения двух зон: почти гладких участков скола и участков, в которых наблюдается система переплетающихся «вен» — следов выхода областей сильно локализованного пластического течения толщиной ~0,1 мкм.

2.3 Физические свойства

В первую очередь следует остановиться на магнитных свойствах аморфных сплавов. В аморфном состоянии, несмотря на неупорядоченное расположение атомов, может возникать упорядоченное расположение магнитных моментов. Поэтому многие аморфные сплавы на основе железа, кобальта, никеля, а также некоторых редкоземельных металлов ферромагнитны. Их поведение качественно похоже на поведение кристаллических ферромагнетиков: в них возникают магнитные домены, при перемагничивании имеется петля гистерезиса, существует точка Кюри, выше которой спонтанная намагниченность исчезает, и т.д. В аморфных сплавах отсутствуют такие барьеры для движения доменных стенок при перемагничивании, как дислокации или границы зёрен, однако в роли барьеров могут выступать локальные неоднородности, магнитострикция от внутренних напряжений и т.п. Отжиг ниже температуры кристаллизации, приводящий к релаксации аморфной структуры и уменьшению внутренних напряжений, обычно уменьшает коэрцитивную силу. Однако в некоторых случаях он, наоборот, может привести к расширению петли гистерезиса из-за стабилизации границ доменов.

10 стр., 4690 слов

Металлы и сплавы в химии и технике

... не существующие в природе радиоактивные металлы. Современная металлургия получает свыше 60 металлов и на их основе более 5000 сплавов. В основе структуры металлов лежит ... магнитные свойства подобных материалов, а также отработка технологических приемов получения качественных магнитов из этих соединений. МАТЕРИАЛЫ С ГИГАНТСКОЙ МАГНИТОСТРИКЦИЕЙ Металлы ТЬ, Dу и ферриты-гранаты этих металлов ...

Электрическое сопротивление аморфных сплавов существенно выше, чем кристаллических, из-за отсутствия дальнего порядка. Кроме того, их электросопротивление слабо меняется с температурой. Существуют и аморфные сверхпроводники.

2.4 Применение аморфных сплавов

1. Порядка 80 % промышленных аморфных сплавов производятся ради их магнитных свойств. Они применяются в качестве магнитомягких материалов, сочетающих изотропность свойств, высокую магнитную проницаемость, высокую индукцию насыщения, малую коэрцитивную силу. Их применяют для изготовления магнитных экранов, магнитных фильтров и сепараторов, датчиков, записывающих головок и т.п. Сердечники трансформаторов, изготовленные из аморфных сплавов, характеризуются весьма малыми потерями на перемагничивание благодаря узкой петле гистерезиса, а также высокому электросопротивлению и малой толщине, что уменьшает потери, связанные с вихревыми токами.

Хотя аморфные материалы химически более активны, чем кристаллические, но при наличии в них хрома и других элементов, способствующих формированию пассивирующей плёнки, они могут обладать исключительно высокой коррозионной стойкостью и использоваться в агрессивных средах; например, сплав Fe45Cr25Mo10P13C7 по стойкости превосходит даже тантал. Аморфные сплавы применяются и как высокопрочные (например, в качестве компонента композиционных материалов и даже корда автомобильных шин).

Некоторые аморфные сплавы проявляют инварные и элинварные свойства (то есть имеют близкий к нулю коэффициент термического расширения или слабо зависящие от температуры модули упругости) и могут применяться в прецизионных приборах. Наконец, аморфные сплавы используются для получения нанокристаллических материалов. Применение аморфных сплавов сдерживают как технологические ограничения (малая толщина получаемых полуфабрикатов, полная несвариваемость), так и малая стабильность свойств — их структура и свойства существенно изменяются не только при нагревах, но и за время работы при комнатной температуре.

В Челябинской области имеется предприятие, производящее аморфные металлические сплавы в промышленных масштабах — это ОАО «Ашинский металлургический завод». Первые работы по получению аморфных сплавов были начаты на нём в 1984 г., а цех по производству аморфной ленты (ЭСПЦ-1) построен в 1989 г.

Аморфная лента производится на агрегатах «Урал-100» методом литья плоской струи жидкого металла на поверхность вращающегося охлаждаемого барабана диаметром около 1000 мм и шириной 200 мм (см. рис. 1, а).

16 стр., 7566 слов

Цветные металлы: классификация, области применения. Металлические ...

... настоящее время стали применять такие металлы (и сплавы на их основе), как титан, цирконий, никель, молибден и даже ниобий, гафний и др. Области применения отдельных цветных металлов ... применения цветных металлов и сплавов на их основе непрерывно растет. В связи с бурным развитием авиастроения, ракетной и атомной техники, химической промышленности в качестве конструкционных материалов в ...

Получаемая лен-та имеет ширину от 3 до 80 мм и толщину 20…30 мкм. Выпускаются магнитомягкие аморфные сплавы на основе железа 2НСР, 9КСР, 30КСР и кобальта 71КНСР, 86КГСР, 82К3ХСР, 84КХСР, а также нанокристаллический сплав типа «файнмет» 5БДСР. (Обозначения элементов в марках сплавов такие же, как у легированных 17 сталей.) Сплавы поставляются потребителям как в виде ленты, смотанной в рулоны, так и в виде готовых изделий — магнитопроводов. Помимо витых магнитопроводов, из аморфной ленты могут изготавливаться магнитные экраны, сердечники магнитных датчиков и трансформаторов, резистивные элементы и др.

Лента поставляется без термической обработки, однако готовые изделия из большинства сплавов требуют обязательной термомагнитной обработки (реже — термической обработки без магнитного поля) при 400…460 °C в течение 10…60 мин. Термомагнитная обработка сплава 5БДСР, сопровождающаяся нанокристаллизацией, производится при 520…550 °C. Без термообработки применяется только сплав 71КНСР для магнитных экранов. Для каждой партии ленты контролируется не только химический состав, но и целый набор магнитных характеристик после термической (термомагнитной) обработки.

Аморфные элинвары используют для изготовления сейсмодатчиков, мембран манометров, датчиков скорости, ускорения и крутящего момента; пружин часовых механизмов, весов, индикаторов часового типа и других прецизионных пружинных устройств. В ФРГ разработан сплав марки Vitrovac-0080, содержащий 78 % никеля, бор и кремний. Сплав имеет прочность при растяжении = 2000 МПа, модуль Юнга 1,5*105 МПа, плотность 8 г/см3, электросопротивление 0,9 Ом*мм2/м, предел выносливости при изгибе около 800 МПа на базе 107 циклов. Сплав рекомендуется для изготовления пружин, мембран и контактов.

Аморфные материалы используют для армирования трубок высокого давления, изготовления металлокорда шин и др. В перспективе возможно применение аморфных сплавов для изготовления маховиков. Такие маховики могут использоваться для аккумулирования энергии и покрытия пиковых нагрузок на электростанциях, для улучшения рабочих характеристик автомобилей и т. д.

АМС на основе железа применяются как материалы для сердечников высокочастотных трансформаторов различного назначения, дросселей, магнитных усилителей. Это обусловлено низкими суммарными потерями, которые в лучших АМС данного класса оказываются на порядок ниже, чем у кремнистых электротехнических сталей.

Сплавы Fe — Si — В с высоким магнитным насыщением были предложены для замены обычного кристаллического сплава Fe — Si в сердечниках трансформаторов, а также сплавов Ni — Fe с высокой магнитной проницаемостью. Отсутствие магнитокристаллической анизотропии в сочетании с довольно высоким электросопротивлением снижает потери на вихревые токи, в особенности на высоких частотах. Потери в сердечниках из разработанного в Японии аморфного сплава Fe81B13Si4C2 составляют 0,06 Вт/кг, т. е. примерно в двадцать раз ниже, чем потери в текстурованных листах трансформаторной стали. Экономия за счет снижения гистерезисных потерь энергии при использовании сплава Fe83B15Si2вместо трансформаторных сталей составит только в США 300 млн. долл/год. Эта область применения металлических стекол имеет широкую перспективу.

Помимо чрезвычайно высокой начальной магнитной проницаемости, особенно на высоких частотах (10 кГц), а также нулевой магнитострикции металлические стекла на основе кобальта имеют высокую твердость и хорошие коррозионные характеристики, поэтому они находят применение в качестве материалов для магнитных записывающих головок. Высокие характеристики и широкое применение нашел разработанный в Японии сплав Fe5Co70Si10B15. Методом закалки в валках производят ленту толщиной 50 мкм и шириной 15 мм с прекрасным качеством обеих поверхностей (шероховатость ± 3 мкм).

10 стр., 4757 слов

Никель и никелевые сплавы

... чистом виде (8%) и для никелевых защитных покрытий (около 10%). В качестве сплавов никель нашел широкое применение в виде жаропрочных, кислотостойких, магнитных материалов, сплавов с особыми физическими свойствами. Особенно ...

Вследствие высокой плотности магнитного потока и высокой износостойкости записывающие головки, изготовленные из такой ленты, имеют лучшие общие характеристики, чем ферритные головки, а также головки из пермаллоев. Эти материалы находят применение в звуко-, видео-, компьютерном и другом записывающем оборудовании.

Ленты из аморфных кобальтовых сплавов применяют в сердечниках малогабаритных высокочастотных трансформаторов различного назначения, в частности для источников вторичного питания и магнитных усилителей. Их используют в детекторах утечки тока, системах телекоммуникаций и в качестве датчиков (в том числе типа феррозондовых), для магнитных экранов и температурночувствительных датчиков, а также высокочувствительных магнитных преобразователей. Высокая прочность в сочетании с коррозионной стойкостью позволяют использовать аморфные сплавы для изготовления кабелей, работающих в контакте с морской водой, а также изделий, условия эксплуатации которых связаны с воздействием агрессивных сред.

Сочетание высокой прочности, коррозионной стойкости и износостойкости, а также магнитомягких свойств обуславливает возможность и других областей применения. Например, возможно использование таких стекол в качестве индукторов в устройствах магнитной сепарации. Изделия, сплетенные из ленты, использовали в качестве магнитных экранов. Преимущество этих материалов в том, что их можно разрезать и изгибать для получения необходимой формы, не снижая при этом их магнитных характеристик.

Поскольку стекла представляют собой сильно переохлажденную жидкость, их кристаллизация при нагреве обычно происходит с сильным зародышеобразованием, что позволяет получать однородный чрезвычайно мелкозернистый металл. Такая кристаллическая фаза не может быть получена обычными методами обработки. Это открывает возможность получения специальных припоев в виде тонкой ленты. Такая лента легко изгибается, ее можно резать и подвергать штамповке для получения оптимальной конфигурации. Весьма важным для пайки является то, что лента гомогенна по составу и обеспечивает надежный контакт во всех точках изделий, подвергаемых пайке. Припои имеют высокую коррозионную стойкость. Они используются в авиационной и космической технике.

В перспективе возможно получение сверхпроводящих кабелей путем кристаллизации исходной аморфной фазы.

Известно также применение аморфных сплавов в качестве катализаторов химических реакций. Например, аморфный сплав Pd — Rh оказался катализатором для реакции разложения NaCl на NaOH и С12, а сплавы на основе железа обеспечивают больший выход (около 80 %) по сравнению с порошком железа (около 15 %) в реакции синтеза

4Н2 + 2СО = С2Н4 + 2Н2О — (12.1)

Аморфные металлы часто называют материалами будущего, что обусловлено уникальностью их свойств, не встречающихся у обычных кристаллических металлов. Сведения об основных областях применения аморфных металлических материалов содержатся в таблице 12.4.

15 стр., 7359 слов

Особенности получения новых материалов с применением нанотехнологий

... методы получения порошков для изготовления наноматериалов Метод Вариант метода Материалы Физические методы Испарение и конденсация ... высокочистого аргона, выносящего сконденсировавшиеся наночастицы в специальный порошковый сборник, разгрузка которого осуществляется в контролируемой ... с этим непрерывно возрастали быстродействие и объем магнитных и оптических запоминающих устройств. Однако по ...

Широкому распространению аморфных металлов препятствуют высокая себестоимость, сравнительно низкая термическая устойчивость, а также малые размеры получаемых лент, проволоки, гранул. Кроме того, применение аморфных сплавов в конструкциях ограничено из-за их низкой свариваемости.

3. Аморфные и стеклообразные полупроводниковые материалы

Аморфные и стеклообразные вещества, проявляющие полупроводниковые свойства. Характеризуются наличием ближнего порядка и отсутствием дальнего порядка. Для стеклообразного полупроводникового материала, который можно рассматривать как особый вид аморфного вещества, характерным является наличие пространственной решетки, в которой кроме ковалентно связанных атомов имеются полярные группировки ионов. В таких материалах связь между группами атомов и ионов осуществляется за счет короткодействующих ковалентных ван-дер-ваальсовых сил. Неорганические стеклообразные полупроводники обладают электронной проводимостью.

В отличие от кристаллических полупроводников у стеклообразных полупроводников отсутствует примесная проводимость. Примеси в стеклообразных полупроводниках влияют на отклонение от стехиометрии, и тем самым изменяют их электрофизические свойства. Эти полупроводники окрашены и непрозрачны в толстых слоях. Стеклообразные полупроводниковые материалы характеризуются разориентированностью структуры и ненасыщенными химическими связями.

Аморфные и стеклообразные полупроводники по составу и структуре подразделяются на оксидные, халькогенидные, органические, тетраэдрические.

Оксидные кислородсодержащие стекла получают сплавлением оксидов металлов с переменной валентностью, например, V2O5-P2O5-ZnO. Оксиды металлов, образующие эти стекла, имеют одновременно не менее двух разновалентных состояний одного и того же элемента, что и обусловливает их электронную проводимость. Бескислородные халькогенидные стекла получают путем сплавления халькогенов (S, Se, Te) с элементами III, IV, V групп периодической системы. Халькогенидные стеклообразные полупроводники получают в основном либо охлаждением расплава, либо испарением в вакууме. Типичные представители —сульфид и селенид мышьяка. К ним относятся также двух- и многокомпонентные стеклообразные сплавы халькогенидов (сульфидов, селенидов и теллуридов) различных металлов (например, Ge-S, Ge- Se, As- S, As- Se, Ge- S P, Ge-As- Se, As-S-Se, As-Ge-Se-Те, As-Sb-S-Se, Ge-S-Se, Ge-Pb-S).

Халькогенидные стекла обладают высокой прозрачностью в ИК-области спектра от 1 до 18 мкм. Аморфные пленки сложных халькогенидных соединений обладают большими возможностями вариации их физико-химических свойств.

Аморфные пленки Si, Ge, GaAs и других полупроводниковых веществ по своим свойствам не представляют практического интереса. Отсутствие в этих полупроводниках дальнего порядка и наличие большого количества дефектов типа микропор приводит к наличию у многих атомов ненасыщенных болтающихся связей. Следствием этого является высокая плотность локализованных состояний (1020см-3) в запрещенной зоне. В связи со спецификой процесса электропроводности в аморфных полупроводниках управлять электрическими свойствами таких материалов практически невозможно.

Введение водорода в аморфные пленки кремния существенным способом изменяет его электрофизические свойства. Растворяясь в аморфном кремнии, водород замыкает на себе болтающиеся связи (насыщает их), в результат в таком «гидрированном» материале, названном Si:H, резко снижается плотность состояний в запрещенной зоне (до 1016-1017см-3).

Такой материал можно легировать традиционными донорными (P, As) и акцепторными (В) примесями, придавая ему электронный или дырочный тип проводимости, создавать в нем p-n-переходы. На основе кремния синтезирован ряд гидрированных аморфных полупроводников, обладающих интересными электрическими и оптическими свойствами Si1-xCx:H, Si1-xGex:H, Si1-xNx:H, Si1-xSnx:H.

Практическое применение аморфных и стеклообразных полупроводников разнообразно. Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому, например, при изготовлении на его основе солнечных элементов. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки -Si:Н толщиной 0,5-1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. По сравнению с поликристаллическими кремниевыми элементами изделия на основе -Si:Н производят при более низких температурах (300 °С).

Гидрированный кремний является прекрасным материалом для создания светочувствительных элементов в ксерографии, датчиков первичного изображения (сенсоров), мишеней видеконов для передающих телевизионных трубок. Оптические датчики из гидрированного аморфного кремния используются для записи в памяти видеоинформации, для целей дефектоскопии в текстильной и металлургической промышленности, в устройствах автоматической экспозиции и регулирования яркости.

Стеклообразные полупроводники являются фотопроводящими полуизоляторами и используются в электрофотографии, системах записи информации и ряде других областей. Благодаря прозрачности в длинноволновой области спектра халькогенидные стеклообразные полупроводники применяются в оптическом приборостроении и т. д.

4. Общие методы получение аморфных материалов

Общие методы получение аморфных материалов можно изобразить в виде рисунка.

аморфный металлический кристаллический физический

Заключение

Двойственная натура аморфных материалов высоко ценится с промышленной точки зрения. Экспериментальная и теоретическая работа над аморфными телами позволила лучше понять парадоксальную природу твёрдой структуры этих материалов. Так же почему возник интерес к аморфным металлическим сплавам? Прежде всего потому, что металлические сплавы с ближним порядком расположения атомов и по сей день являются очень интересными объектами физики конденсированных сред.

В последние годы получены важные результаты при изучении механических, электрических и магнитных свойств аморфных металлических материалов. Однако полное завершение исследований по аморфным структурам еще впереди. Требует своего однозначного решения вопрос о структуре ближнего порядка в соответствии с реальной действительностью. А ведь на очереди аморфные структуры, в которых отсутствует даже ближний порядок. Так что изучение полезных свойств аморфных материалов продолжается по сей день.

Список использованной литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/amorfnyie-tela-plavlenie-amorfnyih-tel/

1. А.Вест Химия твердого тела, ч.2, М.: Мир, 1988

2. Золотухин И.В. Физические свойства аморфных металлических материалов. М.: Металлургия, 1986. 176 с.

3. Б.В.Некрасов, Основы общей химии, М.:Химия, 1973.

4. Фельц А. Аморфные и стеклообразные неорганические твердые тела / А. Фельц. — М.: Мир, 1986. — 556 с.

5. Хенней Н. Химия твердого тела / Н. Хенней. — М.: Мир, 1971. -223 с.

6. Аморфные металлические сплавы / В.В. Немошкаленко и др. / отв. ред. В.В. Немошкаленко. — Киев: Наукова думка, 1987. — 248 с.

7. Судзуки, К. Аморфные металлы / К. Судзуки, Х. Фудзимори, К. Хасимото; под ред. Ц. Масумото. — М.: Металлургия, 1987. — 328 с.

8. Рябов, А.В. Современные способы выплавки стали в дуговых печах: учеб-ное пособие / А.В. Рябов, И.В. Чуманов, М.В. Шишимиров. — Челябинск: Изд-во ЮУрГУ, 2007. — 188 с.

9. Сайт ОАО «Ашинский металлургический завод»: http://www.amet.ru.

10. Сайт «Википедия» : http://ru.wikipedia.org