Автоматизированные измерительные и диагностические комплексы, системы и технические устройства

измерительная информационная система техника

Погрешность измерения — это отклонение результата измерения от истинного значения измеряемой величины . Погрешность измерения является непосредственной характеристикой точности измерения.

Точность измерения — степень близости результата измерения к истинному значению измеряемой физической величины .

Измерение уменьшает исходную неопределенность значения физической величины до уровня неизбежной остаточной неопределенности, определяемой погрешностью измерения.

Значение погрешности измерения зависит от совершенства технических устройств, способа их использования и условий проведения эксперимента.

Принцип измерения — это физическое явление или совокупность физических явлений, положенных в основу измерения. Примером может служить измерение температуры с использованием термоэффекта и другие физические явления, используемые для проведения эксперимента, которые должны быть выбраны с учетом получения требуемой точности измерения.

Измерительный эксперимент — это научно обоснованный опыт для получения количественной информации с требуемой или возможной точностью определения результата измерений. Проведение измерительного эксперимента предполагает наличие технических устройств, которые могут обеспечить заданную точность получения результата. Технические устройства, участвующие в эксперименте, заранее нормируются по показателям точности и относятся к средствам измерений.

Средство измерений — это техническое устройство, используемое в измерительном эксперименте и имеющее нормированные характеристики точности .

Количественная информация, полученная путем измерения, представляет собой измерительную информацию.

Измерительная информация — это количественные сведения о свойстве или свойствах материального объекта, явления или процесса, получаемые с помощью средств измерений в результате их взаимодействия с объектом.

Количество измерительной информации — это численная мера уменьшения неопределенности количественной оценки свойств объекта .

Взаимодействие объекта исследования и средств измерений в процессе эксперимента предполагает наличие сигналов, которые являются носителями информации. Важными носителями информации являются электрический ток, напряжение, импульсы и другие электрические параметры.

8 стр., 3807 слов

Планирование эксперимента

... точности измерений и погрешностей. В методике подробно разрабатывается процесс проведения эксперимента, составляется последовательность (очередность) проведения операций измерений ... организации проведения: лабораторные; натурные; полевые; производственные и т.д. По структуре изучаемых ... хода и результатов эксперимента (приборы, установки, модели и т.п.); обеспечить эксперимент необходимым обслуживающим ...

Измерительный сигнал — сигнал, функционально связанный с измеряемой физической величиной с заданной точностью .

Метод измерения — это совокупность приемов использования принципов и средств измерений

Единство измерений — такое состояние измерений, при котором их результаты выражены в указанных единицах, а погрешности измерений известны с заданной вероятностью. Единство измерений позволяет сравнивать результаты различных экспериментов, проведенных в различных условиях, выполненных в разных местах с использованием разных методов и средств измерений. Это достигается путем точного воспроизведения и хранения установленных единиц физической величины и передачи их размеров применяемым средствам измерения.

Перечисленные вопросы составляют предмет метрологии.

Метрология — это учение о мерах, это наука о методах и средствах обеспечения единства измерений и способах достижения требуемой точности. Мера предназначена для воспроизведения физической величины данного размера.

Законодательная метрология — это раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений. В соответствии с изложенным характеристики средств измерений, определяющие точность измерения с их помощью, называют метрологическими характеристиками средств измерения. Метрологические характеристики обязательно нормируются и в установленном порядке с целью обеспечения единства измерений.

Контроль — процесс установления соответствия между состоянием! (свойством) объекта контроля и заданной нормой . В результате контроля выдается суждение о состоянии объекта.

Разновидности ИС:

  • ИС для прямых измерений, т.е. независимых измерений дискретных значений непрерывных величин;
  • статистические ИС, предназначенные для измерения статистических характеристик измеряемых величин;
  • системы, предназначенные для раздельного измерения зависимых величин.

Входными в ИС для прямых измерений являются величины, воспринимаемые датчиками или другими входными устройствами системы. Задача таких ИС заключается в выполнении аналого-цифровых преобразований множества величин и выдаче полученных результатов измерения.

В рассматриваемых ИС основные типы измеряемых входных величин могут быть сведены либо к множеству изменяющихся во времени величин, либо к изменяющейся во времени t и распределенной по пространству Л непрерывной функции х (t, Л).

При измерении непрерывная функция х (t, Л) представляется множеством дискрет.

Измерительные системы, производящие измерения дискрет функции x (t, Л), основаны на использовании многоканальных, многоточечных, мультиплицированных и сканирующих структур.

Многоканальные системы объединяются в один из самых распространенных классов измерительных систем параллельного действия, применяемых во всех отраслях народного хозяйства. Основные причины столь широкого распространения многоканальных ИС заключаются в возможности использования стандартных, относительно простых, измерительных приборов, в наиболее высокой схемной надежности таких систем, в возможности получения наибольшего быстродействия при одновременном получении результатов измерения, в возможности индивидуального подбора СИ к измеряемым величинам.

14 стр., 6596 слов

Измерения геометрических величин в курсе геометрии 7-9 классов

... изучения измерений в школьном курсе геометрии. Далее представлен анализ школьных учебников геометрии, различных подходов к введению определений геометрических величин, рассматриваемых авторами измерительных инструментов. ... принципах обучения. В методической литературе по математике общепризнанной является следующая система дидактических принципов [14]: 1. Принцип воспитания в обучении математике. ...

Недостатки таких систем — сложность и большая стоимость по сравнению с другими системами.

В измерительных системах последовательного действия — сканирующих измерительных системах — операции получения информации выполняются последовательно во времени с помощью одного канала измерения. Если измеряемая величина распределена в пространстве или собственно координаты точки являются объектом измерения, то восприятие информации в таких системах выполняется с помощью одного сканирующего датчика.

Сканирующие системы находят применение при расшифровке графиков. В медицине, геофизике, метрологии, при промышленных испытаниях, во многих отраслях народного хозяйства и при научных исследованиях затрачивается значительное время на измерение параметров графических изображений и представление результатов измерения в цифровом виде. Для указанных целей промышленностью выполняются различные специализированные полуавтоматические расшифровочные устройства и системы («Силуэт»).

Сканирование может выполняться непосредственно воспринимающим элементом или сканирующим лучом при неподвижном воспринимающем элементе. Такими элементами могут быть оптико-механические или электронно-развертывающие устройства.

Для измерения координат графических изображений применяются различные акустические системы. В геологии и картографии, океанологии и других областях при автоматизации проектирования осуществляются измерения и выдача в цифровом виде координат сложных графических изображений на фото носителях, чертежах и документах. При этом генератор (полуавтоматические измерения) лишь указывает точки изображения, координаты которых необходимо измерить. Используемые здесь датчики, как правило, осуществляют преобразование координат точек в интервалы времени прохождения световых или акустических импульсов между точками, координаты которых были измерены.

При использовании в устройствах ЭВМ одновременно со считыванием координат осуществляют обработку графических изображений по заданной программе.

Голографические ИС (ГИС). Основу датчиков составляют лазеры, представляющие собой когерентные источники света, когерентная оптика и оптоэлектронные преобразователи. Голографические измерительные системы отличаются высокой чувствительностью и повышенной точностью, что послужило основой широкого их применения в голографической интерферометрии. Голографическая интерферометрия обеспечивает бесконтактное измерение и одновременное получение информации от множества точек наблюдаемой поверхности с использованием меры измерения — длины световой волны, известной с высокой метрологической точностью.

Выполнение условий минимальной сложности ИС приводит к необходимости последовательного многократного использования отдельных устройств измерительного тракта, а следовательно, к применению ИС параллельно-последовательного действия, которые носят название многоточечных ИС. Работа таких ИС основана на принципе квантования измеряемых непрерывных величин по времени.

34 стр., 16584 слов

Система измерений количества и показателей качества нефти

... на СИКН и обеспечения давления на выходе СИКН и поверочной установки. Система измерения количества и показателей качества нефти предназначена ... нефти ±0,35% 1.1 Состав СИКН В состав СИКН входят: технологическое оборудование; СИ, установленные на технологическом оборудовании и в операторной; блок измерения параметров качества нефти (БИК); вторичная аппаратура (ВА); система обработки информации ...

Измерительные системы с общей образцовой величиной — мультиплицированные развертывающие измерительные системы — содержат множество параллельных каналов. Структура системы включает датчики и устройство сравнения (одно для каждого канала измерения), источник образцовой величины и одно или несколько устройств представления измерительной информации. Мультиплицированные развертывающие измерительные системы позволяют в течение цикла изменения образцовой величины (развертки) выполнять измерение значений, однородных по физической природе измеряемых величин, без применения коммутационных элементов в канале измерения. Такие ИС имеют меньшее количество элементов по сравнению с ИС параллельного действия и могут обеспечить практически такое же быстродействие.

Статистические измерительные системы . Статистический анализ случайных величин и процессов широко распространен во многих отраслях науки и техники. При статистическом анализе используются законы распределения вероятностей и моментные характеристики, а также корреляционные спектральные функции.

Системы для измерения законов распределения вероятностей случайных процессов — анализаторы вероятностей — могут быть одно — и многоканальными.

Одноканальные анализаторы вероятностей за цикл анализа реализации x (t) позволяют получить одно дискретное значение функции или плотности распределения исследуемого случайного процесса.

Многоканальные анализаторы позволяют получать законы распределения амплитуд импульсов и интервалов времени между ними, амплитуд непрерывных временных и распределенных в пространстве случайных процессов и др. Многоканальные анализаторы широко используются в ядерной физике, биологии, геофизике, в химическом и металлургическом производствах. При этом используются аналоговые, цифровые и смешанные принципы построения анализаторов.

Существует два основных метода построения корреляционных измерительных систем. Первый из них связан с измерением коэффициентов корреляции и последующим восстановлением всей корреляционной функции, второй — с измерением коэффициентов многочленов, аппроксимирующих корреляционную функцию.

По каждому из этих методов система может действовать последовательно, параллельно, работать с аналоговыми или кодоимпульсными сигналами и в реальном времени.

Значительный класс статистических ИС — корреляционные экстремальные ИС — основан на использовании особой точки — экстремума корреляционной функции при нулевом значении аргумента. Корреляционные экстремальные ИС широко применяются в навигации, радиолокации, металлообрабатывающей, химической промышленности и в других областях для измерения параметров движения разнообразных объектов.

Выделение сигналов на фоне шумов, измерение параметров движения, распознавание образов, идентификация, техническая и медицинская диагностика — это неполный перечень областей практического применения методов и средств корреляционного анализа. В настоящее время подавляющий объем статистического анализа выполняется корреляционными ИС, содержащими ЭВМ, либо отдельными устройствами со средствами микропроцессорной техники.

Системы спектрального анализа предназначены для количественной оценки спектральных характеристик измеряемых величин. Существующие методы спектрального анализа основываются на применении частотных фильтров или на использовании ортогональных преобразований случайного процесса и преобразований Фурье над известной корреляционной функцией.

6 стр., 2971 слов

Автоматические системы измерений, контроля и испытаний

... автоматизации Процесс контроля сводится к проверке соответствия объекта установленным техническим требованиям. Сущность контроля (ГОСТ 1650 - 81) заключается в проведении двух основных операций: получение информации о фактическом состоянии объекта, ... режимов работы или условий эксплуатации объекта. Труд оператора сводится к диагностике состояния системы управления, разработке методик измерения и ...

Различают параллельный фильтровый анализ (полосовые избирательные фильтры-резонаторы), последовательный фильтровый анализ (перестраиваемые фильтры и гетеродинные анализаторы), последовательно-параллельный анализ.

Достоинства бесфильтровых анализаторов, основанных на определении коэффициентов ряда Фурье, связаны с получением высокой разрешающей способности, что позволяет их использовать для детального анализа определенных участков спектра.

Системы для раздельного измерения взаимосвязанных величин применяются в следующих случаях:

  • исследуемое явление или объект характеризуется множеством независимых друг от друга величин и при наличии селективных датчиков можно осуществить измерение всех значений
  • при независимых, но не селективных датчиках, сигналы на выходе которых содержат составляющие от нескольких величин, встает задача выделения каждой измеряемой величины;
  • если элементы связаны между собой, то также необходимо осуществить раздельное измерение величин х.

Наиболее типичные задачи взаимно связанных измерений — измерение концентрации составляющих многокомпонентных жидких, газовых или твердых смесей или параметров компонентов сложных электронных цепей без гальванического расчленения.

При раздельном измерении взаимосвязанных величин осуществляется воздействие на многокомпонентное соединение в целях селекции и измерения нужного компонента. Для механических и химических соединений существуют различные методики и средства такого раздельного измерения: масс-спектрометрия, хроматография, люминесцентный анализ и др.

Системы, измеряющие коэффициенты приближающих многочленов, называются аппроксимирующими (АИС) и предназначены для количественного описания величин, являющихся функциями времени, пространства или другого аргумента, а также их обобщающих параметров, определяемых видом приближающего многочлена.

Информационные операции в АИС выполняются последовательным, параллельным или смешанным способом. АИС реализуются с разомкнутой или замкнутой информационной обратной связью, в виде аналоговых или цифровых устройств.

При создании и использовании АИС выбирают тип приближающего многочлена и с учетом заданной погрешности аппроксимации определяют порядок функции.

Реализация задач АИС требует знания априорных сведений об исходной функции, учета метрологических требований к измерениям и др. При этом в качестве базисных функций могут быть выбраны ряды Фурье, разложения Фурье-Уолша, Фурье-Хаара, многочлены Чебышева, Лагранжа, Лежандра, Лагерра и др.

К основным областям применения АИС относятся измерение статистических характеристик случайных процессов и характеристик нелинейных объектов, сжатие радиотелеметрической информации и информации при анализе изображений, фильтрация-восстановление функций, генерация сигналов заданной формы.

Системы автоматического контроля (САК). Системы автоматического контроля предназначены для контроля технологических процессов, при этом характер поведения и параметры их известны. В этом случае объект контроля рассматривается как детерминированный.

20 стр., 9715 слов

Автоматизированные системы обработки информации

... текстового документа в некоторых случаях вредит делу, поскольку информация о форматировании заносится в текст в виде невидимых ... Блокнот и простой текстовой процессор WordPad. Неформатированные текстовые файлы в системе Windows имеют расширение .ТХТ, а файлы WordPad - расширение ... на страницу вверх и вниз или к избранному объекту, в качестве которого может выступать страница, раздел, таблица, ...

Эти системы осуществляют контроль соотношения между текущим (измеренным) состоянием объекта и установленной «нормой поведения» по известной математической модели объекта. По результатам обработки полученной информации выдается суждение о состоянии объектов контроля. Таким образом, задачей САК является отнесение объекта к одному из возможных качественных состояний, а не получение количественной информации об объекте, что характерно для ИС.

В САК благодаря переходу от измерения абсолютных величин к относительным (в процентах «нормального» значения) эффективность работы значительно повышается. Оператор САК при таком способе количественной оценки получает информацию в единицах, непосредственно характеризующих уровень опасности в поведении контролируемого объекта (процесса).

Как правило, САК имеют обратную связь, используемую для воздействия на объект контроля. В них внешняя память имеет значительно меньший объем, чем объем памяти ИС, так как обработка и представление информации ведутся в реальном ритме контроля объекта.

Объем априорной информации об объекте контроля в отличие от ИС достаточен для составления алгоритма контроля и функционирования самой САК, предусматривающего выполнение операций по обработке информации. Алгоритм функционирования САК определяется параметрами объекта контроля. Например, существуют параметры, кратковременное отклонение которых от «нормального» значения может повлечь за собой возникновение аварийной ситуации; кратковременное отклонение других параметров существенно не влияет на нормальный ход процесса и поведение объекта; третья группа параметров используется для расчета технико-экономических показателей (расход сырья, выход основного продукта и т.д.).

По сравнению с ИС эксплуатационные параметры САК более высокие: длительность непрерывной работы, устойчивость и воздействие промышленных помех, климатические и механические воздействия.

В настоящее время в основу классификации САК положена общая классификация ИИС с учетом специфики функций, выполняемых САК.

Системы автоматического контроля могут быть встроенные в объект контроля и внешние по отношению к нему. Первые преимущественно применяются в сложном радиоэлектронном оборудовании и входят в комплект такого оборудования. Вторые обычно более универсальны.

Системы технической диагностики (СТД). Они относятся к классу ИИС, так как здесь обязательно предполагается выполнение измерительных преобразований, совокупность которых составляет базу для логической процедуры диагноза. Цель диагностики — определение класса состояний, к которому принадлежит состояние обследуемого объекта.

Диагностику следует рассматривать как совокупность множества возможных состояний объекта, множества сигналов, несущих информацию о состоянии объекта, и алгоритмы их сопоставления.

Объектами технической диагностики являются технические системы. Элементы любого технического объекта обычно могут находиться в двух состояниях: работоспособном и неработоспособном. Поэтому задачей систем технической диагностики СТД является определение работоспособности элемента и локализация неисправностей.

9 стр., 4078 слов

Автоматизация информационного взаимодействия в системе органов ...

... обязательность Таким образом, государственный финансовый контроль можно определить как комплексную, многоаспектную, межотраслевую систему наблюдения государственными органами, наделенными законодательством контрольными ... платежей – от органов местного самоуправления и органов исполнительной власти. Автоматизация обработки данных сведений позволит соответствующим государственным органам не только ...

Основные этапы реализации СТД:

  • выделение состояний элементов объекта диагностики контролируемых величин, сбор необходимых статистических данных, оценка затрат труда на проверку;
  • построение математической модели объекта и разработка программы проверки объекта;
  • построение структуры диагностической системы.

Элементы объекта диагноза, как правило, недоступны для непосредственного наблюдения, что вызывает необходимость проведения процедуры диагноза без разрушения объекта. В силу этого в СТД преимущественно применяются косвенные методы измерения и контроля.

В отличие от ИС и САК система технической диагностики имеет иную организацию элементов структуры и другой набор используемых во входных цепях устройств и преобразователей информации. Входящий в состав структуры СТД набор средств обработки, анализа и представления информации может оказаться значительно более развитым, чем в ИС и САК. В СТД определение состояния объекта осуществляется программными средствами диагностики. При поиске применяется комбинационный или последовательный метод.

При комбинационном поиске выполняется заданное число проверок независимо от порядка их осуществления. Последовательный поиск связан с анализом результатов каждой проверки и принятием решения на проведение последующей проверки. Системы технической диагностики подразделяют на специализированные и универсальные.

По целевому назначению различают диагностические и прогнозирующие СТД. Диагностические системы предназначены для установления точного диагноза, т.е. для обнаружения факта неисправности и локализации места неисправности. Прогнозирующие СТД по результатам проверки в предыдущие моменты времени предсказывают поведение объекта в будущем.

По виду используемых сигналов СТД подразделяют на аналоговые и кодовые. По характеру диагностики или прогнозирования различают статистические и детерминированные СТД. При статистической оценке объекта решение выносится на основании ряда измерений или проверок сигналов, характеризующих объект. В детерминированной СТД параметры измерения реального объекта сравниваются с параметрами образцовой системы (в СТД должны храниться образцовые параметры проверяемых узлов).

Системы технической диагностики подразделяют также на автоматические и полуавтоматические, а по воздействию на проверяемые объекты они могут быть пассивными и активными. В пассивной СТД результат диагностики представляется на световом табло либо в виде регистрационного документа, т.е. результатом проверки является только сообщение о неисправности. При активной проверке СТД автоматически подключает резерв или осуществляет регулирование параметров отдельных элементов. Конструктивно СТД подразделяют на автономные и встроенные (или внешние и внутренние).

Системы распознавания образов (СРО). Предназначены для определения степени соответствия между исследуемым объектом и эталонным образом.

Для задач классификации биологических объектов и дактилоскопических снимков, опознавания радиосигналов и других создаются специальные системы распознавания образов. Эти системы осуществляют распознавание образов через количественное описание признаков, характеризующих данный объект исследования.

12 стр., 5615 слов

Автоматизированные системы обработки информации и управления на предприятии

... планы развития системы торговых представителей входит создание и дальнейшее развитие: подсистемы оперативного обмена информацией между субъектами ... группа (транспортное хозяйство) Операционная группа (прием, обработка заявок от клиентов, печать накладных) Группа складского ... сеть. Организационная структура управления предприятием построена по линейно-функциональному принципу и представлена на рисунке ...

Процесс распознавания реализуется комбинацией устройств обработки и сравнения обработанного изображения (описания образа) с эталонным образом, находящимся в устройстве памяти. Распознавание осуществляется по определенному, заранее выбранному, решающему правилу. При абсолютном описании образа изображение восстанавливается с заданной точностью, а относительное описание с набором значений отличительных признаков (например, спектральных характеристик), не обеспечивая полное воспроизведение изображения.

Как пример СРО можно привести голографические распознающие системы (PC).

В этих системах распознавание изображений осуществляется с относительно высокой скоростью (от 103 до 106 изображений в секунду благодаря параллельному анализу голограмм).

Голографические PC нашли широкое применение при поиске химических элементов по спектрам их поглощения и в навигации при определении положения объекта по наземным ориентирам. В голографических PC удачно сочетаются высокая производительность оптических методов сбора и обработка информации с логическими и вычислительными возможностями ЭВМ.

Телеизмерительные информационные системы (ТИИС). Они отличаются от ранее рассмотренных в основном длиной канала связи. Канал связи является наиболее дорогой и наименее надежной частью этих систем, поэтому для ТИИС резко возрастает значение таких вопросов, как надежность передачи информации.

Телеизмерительные ИИС могут быть одно — или многоканальными. Они предназначаются для измерения параметров сосредоточенных и рассредоточенных объектов. В зависимости от того, какой параметр несущего сигнала используется для передачи информации, можно выделить ТИИС:

  • интенсивности, в которых несущим параметром является значение тока или напряжения;
  • частотные (частотно-импульсные), в которых измеряемый параметр меняет частоту синусоидальных колебаний или частоту следования импульсов;
  • времяимпульсные, в которых несущим параметром является длительность импульсов;
  • к ним же относятся фазовые системы, в которых измеряемый параметр меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;
  • кодовые (кодоимпульсные), в которых измеряемая величина передается какими-либо кодовыми комбинациями.

Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для информации. Этим системам присущи сравнительно большие погрешности, и они используются при передаче информации на незначительное расстояние.

Частотные ТИИС имеют большие возможности, поскольку в них практически отсутствуют погрешности, обусловленные влиянием линий связи, и возрастает дальность передачи информации по сравнению с системами интенсивности.

Время-импульсные системы по длительности применяемых для передачи импульсов подразделяют на две группы: системы с большим периодом (от 5 до 50 с) и системы с малым периодом (менее десятых долей секунды).

Длиннопериодные системы применяются в основном для измерения медленно меняющихся неэлектрических величин (уровень жидкости, давление газов и др.).

17 стр., 8175 слов

Автоматизированные измерительные и диагностические комплексы, системы

... информации. Важными носителями информации являются электрический ток, напряжение, импульсы и другие электрические пара­метры. Измерительный ... 50-е годы) к информационно-измерительным системам. Конец XIX в. характеризовался первыми ... единиц физической величины и передачи их размеров применяемым средствам ... возможности открылись перед измерительной техникой в связи с появлением микропроцессоров ...

Короткопериодные системы имеют большое быстродействие. Для передачи коротких импульсов требуется большая полоса частот, пропускаемых каналом связи. В силу этого такие системы с проводными линиями связи (ЛС) используются редко.

В последнее время получили широкое развитие адаптивные ТИИС, в которых алгоритмы работы учитывают изменение измеряемой величины или окружающих условий (воздействий).

Основная цель применения адаптивных ТИИС состоит в исключении избыточности выдаваемой системой измерительной информации и в сохранении или оптимизации метрологических характеристик (помехоустойчивости, быстродействия, погрешностей) при изменении условий измерительного эксперимента.

В адаптивных ТИИС используются алгоритмы адаптивной дискретизации и могут быть использованы алгоритмы адаптивной аппроксимации.