Эффектом Холла называется появление в проводнике с током плотностью j , помещённом в магнитное поле Н , электрического поля Ех , перпендикулярного Н и j . При этом напряжённость электрического поля, называемого ещё полем Холла, равна:
Рис 1.1
E x = RHj sin
где a угол между векторами Н и J (a <180° ).
Когда H ^ j , то величина поля Холла Ех максимальна: Ex = RHj . Величина R , называемая коэффициентом Холла, является основной характеристикой эффекта Холла. Эффект открыт Эдвином Гербертом Холлом в 1879 в тонких пластинках золота. Для наблюдения Холла эффекта вдоль прямоугольных пластин из исследуемых веществ, длина которых l значительно больше ширины b и толщины d , пропускается ток:
I = jbd (см. рис.);
V x
V x = Ех b = RHj
Так как ЭДС Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Холла эффект относится к нечётным гальваномагнитным явлениям.
v др
R= m / s (3)
Здесь m* — эффективная масса носителей, t — среднее время между двумя последовательными соударениями с рассеивающими центрами.
Иногда при описании Холла эффекта вводят угол Холла j между током j и направлением суммарного поля Е : tg j = Ex /E= W t , где W — циклотронная частота носителей заряда. В слабых полях ( W t <<1) угол Холла j » W t , можно рассматривать как угол, на который отклоняется движущийся заряд за время t . Приведённая теория справедлива для изотропного проводника (в частности, для поликристалла), у которого m* и t их— постоянные величины. Коэффициент Холла (для изотропных полупроводников) выражается через парциальные проводимости s э и s д и концентрации электронов nэ и дырок nд :
Электрические печи
... относится к приемникам электрической энергии 2-й категории. В дуговой электрической печи используется тепловой эффект электрической дуги. Применяются для ... электромагнитного поля, создаваемого индуктором. 2 ОСНОВНАЯ ЧАСТЬ 2.1 Конструкция печи Устройство дуговых электропечей. Первая дуговая электропечь в ... корытообразное сечение и приварен к кожуху под углом 10—12° к горизонтали. Изнутри желоб футеруют ...
(a) для слабых полей
(4)
(б) для сильных полей.
n э = nд , = n
,
а знак R указывает на преобладающий тип проводимости.
Для металлов величина R зависит от зонной структуры и формы Ферми поверхности. В случае замкнутых поверхностей Ферми и в сильных магнитных полях ( W t »1) коэффициент Холла изотропен, а выражения для R совпадают с формулой 4,б. Для открытых поверхностей Ферми коэффициент R анизотропен. Однако, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогично 4,б.
2. Объяснение эффекта Холла с помощью электронной теории.
Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U=j 1 -j2 (смотри рис 2.1).
Она называется Холловской разностью потенциалов (в предыдущем пункте – ЭДС Холла) и определяется выражением:
u h
Здесь b — ширина пластинки, j — плотность тока, B — магнитная индукция поля, R — коэффициент пропорциональности, получивший название постоянной Холла. Эффект Холла очень просто объясняется электронной теорией, отсутствие магнитного поля ток в пластинке обусловливается электрическим полем Ео (смотри рис 2.2).
Эквипотенциальные поверхности этого поля образуют систему перпендикулярных к вектору Ео скоростей. Две из них изображены на рисунке сплошными прямыми линиями. Потенциал во всех точках каждой поверхности, а следовательно, и в точках 1 и 2 одинаков. Носители тока — электроны — имеют отрицательный заряд, поэтому скорость их упорядоченного движения и направлена противоположно вектору плотности тока j .
При включении магнитного поля каждый носитель оказывается под действием магнитной силы F , направленной вдоль стороны b пластинки и равной по модулю
F=euB (2.2)
Е B
Е B =uВ.
Е B
UH=bE B =buB
Выразим u через j , n и e в соответствии с формулой j=neu . В результате получим:
U H =(1/ne)bjB (2.3)
Последнее выражение совпадает с (2.1), если положить
R=1/ne (2.4)
Из (2.4) следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле (т. е. число носителей в единице объема).
Важной характеристикой вещества является подвижность в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электрического поля, равной единице. Если в поле напряженности Е носители приобретают скорость u то подвижность их u0 равна:
U 0 =u/E (2.5)
Подвижность можно связать с проводимостью s и концентрацией носителей n . Для этого разделим соотношение j=neu на напряжённость поля Е . Приняв во внимание, что отношение j к Е дает s , а отношение u к Е — подвижность, получим:
s =neu0 (2.6)
Измерив постоянную Холла R и проводимость s , можно по формулам (2.4) и (2.6) найти концентрацию и подвижность носили тока в соответствующем образце.
|
|
Рис 2.1
|
||
|
|
Рис 2.2
3. Эффект Холла в ферромагнетиках.
В ферромагнетиках на электроны проводимости действует не только внешнее, но и внутреннее магнитное поле:
E x = (RB + Rа M)j
4. Эффект Холла в полупроводниках.
Эффект Холла наблюдается не только в металлах, но и в полупроводниках, причем по знаку эффекта можно судить о принадлежности полупроводника к n- или p-типу, так как в полупроводниках n-типа знак носителей тока отрицательный, полупроводниках p-типа – положительный. На рис. 4.1 сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление магнитной силы изменяется на противоположное как при изменении направления движения заряда, так и при изменении его знака. Следовательно, при одинаковом направлении тока и поля магнитная сила, действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней (на рисунке) грани выше, чем нижней, а в случае отрицательных носителей — ниже. Таким образом, определив знак холловской разности потенциалов, можно установить знак носителей тока. Любопытно, что у некоторых металлов знак U н соответствует положительным носителям тока. Объяснение этой аномалии дает квантовая теория.
|
|||||
|
|||||||
|
|
Рис 4.1
5. Эффект Холла на инерционных электронах в полупроводниках.
Предсказан новый физический эффект, обусловленный действием силы Лоренца на электроны полупроводника, движущегося ускоренно. Получено выражение для поля Холла и выполнены оценки холловского напряжения для реальной двумерной гетероструктуры. Выполнен анализ возможной схемы усиления холловского поля на примере двух холловских элементов, один из которых — генератор напряжения, а второй — нагрузка.
Известен опыт Толмена и Стюарта, в котором наблюдался импульс тока j , связанный с инерцией свободных электронов. При инерционном разделении зарядов в проводнике возникает электрическое поле напряженностью E . Если такой проводник поместить в магнитное поле B , то следует ожидать появления эдс, аналогичной эффекту Холла, обусловленной действием силы Лоренца на инерционные электроны.
dv x
, (1)
, (2)
где s = en m — проводимость, m — подвижность. В магнитном поле B (0; 0; Bz ) возбуждается поле Ey = (1/ne ) jx Bz или
(3)
E y
Наиболее подходящий объект для экспериментального наблюдения эффекта — двумерные электроны в гетеросистеме n -Alx Ga1-x As/GaAs. В единичном образце (1×1 см2 ) в поле 1 Тл и m@ 104 см2 (В * с) для dvx /dt @ 10 м/с2 следует ожидать сигнал Vy @ 6*10-11 B, что вполне доступно для современной техники измерений.
Рассмотрим одну из возможностей усиления эффекта на примере двух холловских элементов, один из которых (I) является генератором поля Холла, а второй (II) —нагрузкой. Схема соединений холловских элементов I и II показана на рисунке.
B z
E (2) y =(E(1) y + E(1) y )mBz (4)
Учитывая соотношение E (1) y =E (1) x m Bz , получаем
E (2) y =(1+mBz )mBz E(1) x (5)
y
В самом деле, для данной геометрии опыта (см рисунок) в магнитном поле B (0; 0; Bz ) при изменении координаты x со временем по закону x = x 0 cos wt, где w — частота задающего генератора, нагруженного на пьезоэлемент, и x 0 — амплитуда колебаний последнего, имеем из соотношения (3)
(6)
l y
(7)
l * y
Рис 5.1
Схема усиления холловского поля из двух элементов I и II., Указаны направления: знаком
6. Датчик ЭДС Холла.
Датчик ЭДС Холла – это элемент автоматики, радиоэлектроники и измерительной техники, используемый в качестве измерительного преобразователя, действие которого основано на эффекте Холла. Представляет собой тонкую прямоугольную пластину (площадь – несколько мм 2 ), или пленку, изготовленную из полупроводника (Si, Ge, InSb, InAs), имеет четыре электрода для подвода тока и съёма ЭДС Холла. Чтобы избежать механических повреждений, пластинки Холла ЭДС датчика монтируют (а пленку напыляют в вакууме) на прочной подложке из диэлектрика (слюды, керамики).
Для получения наибольшего эффекта толщина пластины (плёнки) делается возможно меньшей. Датчики ЭДС Холла применяют для бесконтактного измерения магнитных полей (от 10-6 до 105 Э).
При измерении слабых магнитных полей пользуются Холла ЭДС датчиками, вмонтированными в зазоре ферро– или ферримагнитного стержня (концентратора), что позволяет значительно повысить чувствительность датчика. Так как в полупроводниках концентрация носителей зарядов (а следовательно, и коэффициент Холла) может зависеть от температуры, то в случае точных измерений необходимо либо термостатировать Холла ЭДС датчик, либо применять сильнолегированные полупроводники (последнее снижает чувствительность датчика).
При помощи Холла ЭДС датчика можно измерять любую физическую величину, которая однозначно связана с магнитным полем; в частности можно изменять силу тока, так как вокруг проводника с током образуется магнитное поле, которое можно измерить. На основе Холла ЭДС датчика созданы амперметры на токи до 100 кА. Кроме того Холла ЭДС датчики применяются в измерителях линейных и угловых перемещений, а также в измерителях градиента магнитного поля, магнитного потока и мощности электрических машин, в бесконтактных преобразователях постоянного тока в переменный, и, наконец, в воспроизводящих головках систем звукозаписи.
8. Список используемой литературы., Теоретическая физика
с. 309.
2) И.М. Цидильковский УФН, 115 , 321 (1975).
Редактор Т.А. Полянская
3) Физика и техника полупроводников, 1997, том 31, № 4
4) И.В. Савельев Курс общей физики, т. II. Электричество и магнетизм. Волны. Оптика : Учебное пособие. – 2-е издание, переработанное (М., Наука, главная редакция физико-математической литературы,1982) с.233 – 235.
5) Большая советская энциклопедия, том 28, третье издание (М., издательство «Советская энциклопедия», 1978) с.338-339.