Эффектом холла называется появление в провод нике с током плотностью помещён ном в магнитное поле н

Реферат

Эффектом холла называется появление в провод нике с током плотностью помещён ном в магнитное поле н 1 Эффектом Холла называется появление в провод­нике с током плотностью j , помещён­ном в магнитное поле Н , электрического поля Ех , перпендикулярного Н и j . При этом на­пряжённость электрического поля, называемого ещё полем Холла, равна:

Рис 1.1

E x = RHj sin

где a угол между векторами Н и J (a <180° ).

Когда H ^ j , то величина поля Холла Ех максимальна: Ex = RHj . Ве­личина R , называемая коэффициентом Холла, является основной характеристикой эффекта Холла. Эффект открыт Эдвином Гербертом Холлом в 1879 в тонких пла­стинках золота. Для наблюдения Холла эффекта вдоль прямоугольных пластин из иссле­дуемых веществ, длина которых l значитель­но больше ширины b и толщины d , про­пускается ток:

I = jbd (см. рис.);

V x

V x = Ех b = RHj

Так как ЭДС Холла меняет знак на обратный при изменении направления магнитного поля на обратное, то Холла эффект относится к не­чётным гальваномагнитным явлениям.

v др

R= m / s (3)

Здесь m* — эффективная масса носи­телей, t — среднее время между двумя последовательными соударениями с рассеивающи­ми центрами.

Иногда при описании Холла эффекта вводят угол Холла j между током j и направлением суммарного поля Е : tg j = Ex /E= W t , где W — циклотронная частота носи­телей заряда. В слабых полях ( W t <<1) угол Холла j » W t , можно рассматривать как угол, на который отклоняется движу­щийся заряд за время t . Приведённая те­ория справедлива для изотропного про­водника (в частности, для поликристал­ла), у которого m* и t их— постоянные вели­чины. Коэффициент Холла (для изотроп­ных полупроводников) выражается через парциальные проводимости s э и s д и концентрации электронов nэ и дырок nд :

Эффектом холла называется появление в провод нике с током плотностью помещён ном в магнитное поле н 2 (a) для слабых полей

14 стр., 6962 слов

Использование резистивного эффекта для измерения физических величин

... Холла не возникает. В такой структуре наблюдается максимальный эффект магнитосопротивления, однако ввиду технических трудностей практическое применение диска Корбино сильно затруднено. 1.2 Тензорезистивный эффект ... на движущиеся носители зарядов действует сила Лоренца, уравновешивающаяся холловским электрическим полем. Однако холловское поле уравновешивает только те носители, которые движутся со ...

(4)

Эффектом холла называется появление в провод нике с током плотностью помещён ном в магнитное поле н 3 (б) для сильных полей.

n э = nд , = n

Эффектом холла называется появление в провод нике с током плотностью помещён ном в магнитное поле н 4 ,

а знак R указывает на преобладающий тип про­водимости.

Для металлов величина R зависит от зонной структуры и формы Ферми поверхности. В случае замкнутых по­верхностей Ферми и в сильных магнит­ных полях ( W t »1) коэффициент Холла изо­тропен, а выражения для R совпадают с формулой 4,б. Для открытых поверхно­стей Ферми коэффициент R анизотропен. Одна­ко, если направление Н относительно кристаллографических осей выбрано так, что не возникает открытых сечений поверхности Ферми, то выражение для R аналогич­но 4,б.

2. Объяснение эффекта Холла с помощью электронной теории.

Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между гранями, параллельными направлениям тока и поля возникает разность потенциалов U=j 1 -j2 (смотри рис 2.1).

Она называется Холловской разностью потенциалов (в предыдущем пункте – ЭДС Холла) и определяется выражением:

u h

Здесь b — ширина пластинки, j — плотность тока, B — магнитная индукция поля, R — коэффициент пропорциональности, получивший название постоянной Холла. Эффект Холла очень просто объясняется электронной теорией, отсутствие магнитного поля ток в пластинке обусловливается электрическим полем Ео (смотри рис 2.2).

Эквипотенциальные поверхности этого поля образуют систему перпендикулярных к вектору Ео скоростей. Две из них изображены на рисунке сплошными прямыми линиями. Потенциал во всех точках каждой поверхности, а следовательно, и в точках 1 и 2 одинаков. Носители тока — электроны — имеют отрицательный заряд, поэтому скорость их упорядоченного движения и направлена противоположно вектору плотности тока j .

При включении магнитного поля каждый носитель оказывается под действием магнитной силы F , направленной вдоль стороны b пластинки и равной по модулю

F=euB (2.2)

Е B

Е B =uВ.

Е B

UH=bE B =buB

Выразим u через j , n и e в соответствии с формулой j=neu . В результате получим:

U H =(1/ne)bjB (2.3)

Последнее выражение совпадает с (2.1), если положить

R=1/ne (2.4)

Из (2.4) следует, что, измерив постоянную Холла, можно найти концентрацию носителей тока в данном металле (т. е. число носи­телей в единице объема).

Важной характеристикой вещества является подвижность в нем носителей тока. Подвижностью носителей тока называется средняя скорость, приобретаемая носителями при напряженности электри­ческого поля, равной единице. Если в поле напряженности Е носи­тели приобретают скорость u то подвижность их u0 равна:

U 0 =u/E (2.5)

Подвижность можно связать с проводимостью s и концентрацией носителей n . Для этого разделим соотношение j=neu на напряжённость поля Е . Приняв во внимание, что отношение j к Е дает s , а отношение u к Е — подвижность, получим:

s =neu0 (2.6)

Измерив постоянную Холла R и проводимость s , можно по формулам (2.4) и (2.6) найти концентрацию и подвижность носи­ли тока в соответствующем образце.

 объяснение эффекта холла с помощью электронной теории  1
j
– – – – – – – – – – 1 – – – – – – – – – – –

Рис 2.1

 объяснение эффекта холла с помощью электронной теории  2

 объяснение эффекта холла с помощью электронной теории  3

E0
u
 объяснение эффекта холла с помощью электронной теории  4
 объяснение эффекта холла с помощью электронной теории  5
 объяснение эффекта холла с помощью электронной теории  6
+++++++++++++2+++++++++++++

Рис 2.2

3. Эффект Холла в ферромагнетиках.

В ферромагнетиках на электроны про­водимости действует не только внешнее, но и внутреннее магнитное поле:

E x = (RB + Rа M)j

4. Эффект Холла в полупроводниках.

Эффект Холла наблюдается не только в металлах, но и в полупроводниках, причем по знаку эффекта можно судить о принадлеж­ности полупроводника к n- или p-типу, так как в полупроводниках n-типа знак носителей тока отрицательный, полупроводниках p-типа – положительный. На рис. 4.1 сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление магнитной силы изменяется на противоположное как при изменении направления движения заряда, так и при изменении его знака. Следовательно, при одинаковом направлении тока и поля магнитная сила, действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней (на рисунке) грани выше, чем нижней, а в случае отрицательных носителей — ниже. Таким образом, определив знак холловской разности потенциалов, можно установить знак носителей тока. Любопытно, что у некоторых металлов знак U н соответствует положительным носителям тока. Объяснение этой аномалии дает квантовая теория.

 эффект холла в полупроводниках  1
 эффект холла в полупроводниках  2
 эффект холла в полупроводниках  3
– – – – – – – – – – –
 эффект холла в полупроводниках  4
 эффект холла в полупроводниках  5
B
 эффект холла в полупроводниках  6
– – – – – – – – – – –
+++++++++++++++

Рис 4.1

5. Эффект Холла на инерционных электронах в полупроводниках.

Предсказан новый физический эффект, обусловленный действием силы Лоренца на электроны полупроводника, движущегося ускоренно. Получено выражение для поля Холла и выполнены оценки холловского напряжения для реальной двумерной гетероструктуры. Выполнен анализ возможной схемы усиления холловского поля на примере двух холловских элементов, один из которых — генератор напряжения, а второй — нагрузка.

Известен опыт Толмена и Стюарта, в котором наблюдался импульс тока j , связанный с инерцией свободных электронов. При инерционном разделении зарядов в проводнике возникает электрическое поле напряженностью E . Если такой проводник поместить в магнитное поле B , то следует ожидать появления эдс, аналогичной эффекту Холла, обусловленной действием силы Лоренца на инерционные электроны.

dv x

 эффект холла на инерционных электронах в полупроводниках  1 , (1)

 эффект холла на инерционных электронах в полупроводниках  2 , (2)

где s = en m — проводимость, m — подвижность. В магнитном поле B (0; 0; Bz ) возбуждается поле Ey = (1/ne ) jx Bz или

 эффект холла на инерционных электронах в полупроводниках  3 (3)

E y

Наиболее подходящий объект для экспериментального наблюдения эффекта — двумерные электроны в гетеросистеме n -Alx Ga1-x As/GaAs. В единичном образце (1×1 см2 ) в поле 1 Тл и m@ 104 см2 (В * с) для dvx /dt @ 10 м/с2 следует ожидать сигнал Vy @ 6*10-11 B, что вполне доступно для современной техники измерений.

Рассмотрим одну из возможностей усиления эффекта на примере двух холловских элементов, один из которых (I) является генератором поля Холла, а второй (II) —нагрузкой. Схема соединений холловских элементов I и II показана на рисунке.

B z

E (2)y =(E(1)y + E(1)y )mBz (4)

Учитывая соотношение E (1)y =E (1)x m Bz , получаем

E (2)y =(1+mBz )mBz E(1)x (5)

y

В самом деле, для данной геометрии опыта (см рисунок) в магнитном поле B (0; 0; Bz ) при изменении координаты x со временем по закону x = x 0 cos wt, где w — частота задающего генератора, нагруженного на пьезоэлемент, и x 0 — амплитуда колебаний последнего, имеем из соотношения (3)

 эффект холла на инерционных электронах в полупроводниках  4 (6)

l y

 эффект холла на инерционных электронах в полупроводниках  5 (7)

l *y

 эффект холла на инерционных электронах в полупроводниках  6

Рис 5.1

Схема усиления холловского поля из двух элементов I и II., Указаны направления: знаком

6. Датчик ЭДС Холла.

Датчик ЭДС Холла – это элемент автоматики, радиоэлектроники и измерительной техники, используемый в качестве измерительного преобразователя, действие которого основано на эффекте Холла. Представляет собой тонкую прямоугольную пластину (площадь – несколько мм 2 ), или пленку, изготовленную из полупроводника (Si, Ge, InSb, InAs), имеет четыре электрода для подвода тока и съёма ЭДС Холла. Чтобы избежать механических повреждений, пластинки Холла ЭДС датчика монтируют (а пленку напыляют в вакууме) на прочной подложке из диэлектрика (слюды, керамики).

Для получения наибольшего эффекта толщина пластины (плёнки) делается возможно меньшей. Датчики ЭДС Холла применяют для бесконтактного измерения магнитных полей (от 10-6 до 105 Э).

При измерении слабых магнитных полей пользуются Холла ЭДС датчиками, вмонтированными в зазоре ферро– или ферримагнитного стержня (концентратора), что позволяет значительно повысить чувствительность датчика. Так как в полупроводниках концентрация носителей зарядов (а следовательно, и коэффициент Холла) может зависеть от температуры, то в случае точных измерений необходимо либо термостатировать Холла ЭДС датчик, либо применять сильнолегированные полупроводники (последнее снижает чувствительность датчика).

При помощи Холла ЭДС датчика можно измерять любую физическую величину, которая однозначно связана с магнитным полем; в частности можно изменять силу тока, так как вокруг проводника с током образуется магнитное поле, которое можно измерить. На основе Холла ЭДС датчика созданы амперметры на токи до 100 кА. Кроме того Холла ЭДС датчики применяются в измерителях линейных и угловых перемещений, а также в измерителях градиента магнитного поля, магнитного потока и мощности электрических машин, в бесконтактных преобразователях постоянного тока в переменный, и, наконец, в воспроизводящих головках систем звукозаписи.

8. Список используемой литературы., Теоретическая физика

с. 309.

2) И.М. Цидильковский УФН, 115 , 321 (1975).

Редактор Т.А. Полянская

3) Физика и техника полупроводников, 1997, том 31, № 4

4) И.В. Савельев Курс общей физики, т. II. Электричество и магнетизм. Волны. Оптика : Учебное пособие. – 2-е издание, переработанное (М., Наука, главная редакция физико-математической литературы,1982) с.233 – 235.

5) Большая советская энциклопедия, том 28, третье издание (М., издательство «Советская энциклопедия», 1978) с.338-339.