Виды и принцип работы регуляторов

Современный этап развития автоматизации технологических процессов характеризуется усложнением задач автоматического регулирования и управления, значительным увеличением числа регулируемых параметров, совершенствованием разработанных и созданием новых функциональных элементов систем непрерывного и дискретного действия, а также повышением точности регулирования на основе применения средств микропроцессорной техники и микроЭВМ. Объективная необходимость повышения производительности труда, экономии сырья и рабочей силы на предприятиях пищевой промышленности требует автоматизации производственных процессов и, в частности, создания и использования автоматизированных систем управления технологическими процессами.Возможность и уровень автоматизации пищевых производств зависят от многих факторов и предпосылок: характера и степени непрерывности технологического процесса, уровня механизации, характеристик системы управления, наличия их математической модели и алгоритмов функционирования и др.

К особенностям автоматизации пищевых производств относятся следующие: сочетания непрерывных и циклических процессов, значительные колебания свойств исходного сырья, недостаточная изученность, во многих случаях — отсутствие как математического описания технологических процессов и pa6oты технологического оборудования, так и необходимой аппаратуры автоматики. В производстве пищевой продукции можно выделить три аспекта. Первый аспект связан с управлением процессами, в основе которых лежат изменения физико-химических свойств или геометрических размеров исходного сырья. В этом случае задача управления сводится к измерению, контролю и регулированию физико-химических параметров, характеризующих протекание технологического процесса. Второй аспект связан с управлением технологическим оборудованием, которое должно обеспечивать протекание процессов в оптимальном режиме. Третий аспект включает вопросы автоматизации процессов обслуживания технологического оборудования.

Объем автоматизации технологических процессов определяется тремя факторами: необходимостью, экономической целесообразностью и экологией окружающей среды. К первому фактору относится автоматизация технологических процессов, которыми человек не в состоянии управлять. Средства автоматизации, применение которых обусловлено необходимостью не учитываются при оценке экономической эффективности, при определении рационального объема автоматизации. Второй фактор — экономическая эффективность — поддается расчету и позволяет оценить экономическую эффективность внедрения средств автоматизации с учетом социальных вопросов улучшения условий труда обслуживающего персонала. Следует отметить, что автоматизация процессов практически всегда способствует положительному решению вопросов экологии, так как все автоматизированные процессы при правильной настройке средств автоматики протекают в оптимальных режимах.

12 стр., 5644 слов

Автоматизация систем управления технологическими процессами. ...

... методов и средств вычислительной техники. Автоматизированная система управления технологическими процессами (АСУ ТП) - это АСУ ... систем управления. Их характеристики Выделяются шесть наиболее существенных признаков классификации АСУТП, а именно: по характеру управляемого процесса; по сложности управляемого процесса; по степени охвата управляемого процесса; по степени автоматизация задач управления; ...

Регулятор — это устройство, которое управляет величиной контролируемого параметра. Регуляторы используются в системах автоматического регулирования. Они следят за отклонением контролируемого параметра от заданного значения и формируют управляющие сигналы для минимизации этого отклонения.

Наиболее известных на российском рынке производителей:

Регуляторы производства МЗТА

Регуляторы и измерители производства ОВЕН

1. Классификация регуляторов. Их виды и преимущества

Для классификации регуляторов используется ряд параметров. Рассмотрим их детально.

В системах автоматического регулирования наиболее распространенными являются П регулятор, ПИ регулятор, ПИД регулятор, позиционный регулятор. Часто отдельно выделяют ШИМ регуляторы, но это ПДД регулятор, выход которого преобразуется в один или два дискретных сигнала с помощью широтноимпульсной модуляции. Кроме того, сейчас появляется все больше регуляторов, реализующих законы управления на базе нечеткой логики нечеткий регулятор.

Объект управления (ОУ) или объект регулирования — устройство, требуемый режим работы которого должен поддерживаться извне специально организованными управляющими воздействиями.

Управление — формирование управляющих воздействий по определенному закону, обеспечивающих требуемый режим работы ОУ.

Автоматическое управление — управление, осуществляемое без непосредственного участия человека.

Задача регулирования — доведение выходной величины объекта регулирования до заранее определенного значения и удержания ее на данном значении с учетом влияния возмущающих воздействий.

Система автоматического регулирования (САР) — автоматическая система с замкнутой цепью воздействия (см. рис Структурная схема простейшей системы регулирования), в котором управление Y вырабатывается в результате сравнения истинного значения (PV=X) с заданным значением SP. Основное назначение САР заключается в поддержании заданного постоянного значения регулируемого параметра или изменение его по определенному закону.

Выходное воздействие (Y) — воздействие, выдаваемое на выходе системы управления или устройства регулирования. В литературе по автоматизации также встречаются аббревиатуры, соответствующие данному определению:

Задающее воздействие — воздействие на систему, определяющее требуемый закон изменения регулируемой величины.

Возмущающее воздействие — воздействие, стремящееся нарушить функциональную связь между задающим воздействием и регулируемой величиной.

Обрамтная связь — это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы. Другими словами, на вход системы подаётся сигнал, пропорциональный её выходному сигналу (или, в общем случае, являющийся функцией этого сигнала).

5 стр., 2184 слов

Автоматическое управление. Следящие системы

... соответственно опережение и отставание (поскольку , то ) Следящая система состоит из объекта регулирования, автоматического регулятора (управляющее устройство), исполнительного механизма, преобразующего выходной сигнал регулятора в сигнал управления объектом, датчика и измерительного преобразователя. Функциональная схема ...

Часто это делается преднамеренно, чтобы повлиять на динамику функционирования системы.

Различают положительную и отрицательную обратную связь. Отрицательная обратная связь изменяет входной сигнал таким образом, чтобы противодействовать изменению выходного сигнала. Это делает систему более устойчивой к случайному изменению параметров. Положительная обратная связь, наоборот, усиливает изменение выходного сигнала. Системы с сильной положительной обратной связью проявляют тенденцию к неустойчивости, в них могут возникать незатухающие колебания, т.е. система становится генератором.

Регулятор — в теории управления устройство, которое следит за работой объекта управления как системы и вырабатывает для неё управляющие сигналы. Регуляторы следят за изменением некоторых параметров объекта управления (непосредственно, либо с помощью наблюдателей) и реагируют на их изменение с помощью некоторых алгоритмов управления в соответствии с заданным качеством управления.

2. Тип выходного сигнала управления ПИД регулятора в системах автоматического регулирования

Исполнительные механизмы систем автоматического регулирования могут иметь различные типы входных сигналов. Так, некоторые управляются унифицированным сигналом, некоторые для регулирования используют 1 дискретный вход (например, регулятор температуры в печи), а некоторые — два дискретных входа (например, регулятор давления пара в аппарате управляет задвижкой: используются два сигнала — один на открытие, а другой на закрытие задвижки).

Соответственно и регуляторы могут иметь для управления либо аналоговый выходной сигнал, либо один или два дискретных сигнала для реализации ШИМ управления (ШИМ регулятор), либо дискретный выход реализующий фазоимпульсное управление мощностью. Номенклатура приборов, которые мы предлагаем для создания систем автоматического регулирования, включает в себя регуляторы как с аналоговым выходом, так и с дискретными выходами, реализующими широтно-импульсную модуляцию управляющего сигнала.

Наличие ретрансляционного выхода

Часто в системах автоматического регулирования величиной технологического параметра надо не только управлять, а так же ее надо регистрировать. Для этого многие регуляторы имеют дополнительный аналоговый выход. На него подается в заданном масштабе величина регулируемого параметра. Этот выход может быть заведен на вход регистрирующего прибора.

Дискретные выходы и возможность их программирования

При наличии аналогового управляющего сигнала регулятор может иметь один или два дискретных сигнала для реализации функций сигнализации, защиты или других. Так, например, ПИД регулятор температуры может формировать сигналы тревог при выходе регулируемого параметра за указанные границы.

6 стр., 2741 слов

Исследования одноконтурной системы автоматического регулирования ...

... регулирования увеличиваеться, степень затуханияпрактически осталась на том же уровне, % перерегулирования становиться меньше, а коллебательнность остаётся на том же уровне. Заключение Когда температура перегретого пара ... повышается сверх заданной, исполнительный орган регулятора ... Расчет линейных систем автоматического регулирования: Учеб.пособие.- Иркутск: ...

Наличие программного задатчика (регулятор давления, регулятор температуры)

Часто в системах автоматического регулирования циклических процессов требуется по определенной программе менять величину задания регулятора. Для этого используется программный задатчик. Параметрами оценки таких регуляторов являются число шагов программы, максимальная и минимальная длинна шага программы, возможность плавного изменения задания на шаге. Так например ПИД регулятор температуры и ПИД регулятор давления в системе автоматического регулирования установки выращивания кристаллов имеют сложные программы изменения их заданий.

Число входных сигналов системы регулирования, участвующих в формировании управляющего сигнала (регулятор расхода)

Часто надо регулировать какой-либо параметр с коррекцией управляющего сигнала по величине другого параметра (например, регулятор расхода газа с коррекцией по температуре).

Другим примером может быть реализация каскадного регулирования.

Тип регулируемого параметра

Существуют универсальные регуляторы — им на вход можно подать любой тип сигнала. С их помощью можно делать системы регулирования любых технологических параметров. Однако часто тип регулируемого параметра жестко ограничен: регулятор давления, регулятор температуры, регулятор уровня, регулятор расхода и т.п. Это связано с тем, что для измерения различных типов сигналов могут использоваться различные алгоритмы обработки. Так регулятор температуры предполагает при получении сигналов от термопар компенсацию температуры холодных спаев и преобразование величины контролируемой термо ЭДС в значение температуры. В регуляторе расхода часто надо уточнить величину измеренного расхода по значению давления и температуры контролируемой среды. Поэтому, чтобы упростить программу, зашитую в регулятор, и удешевить изделие производители разделяют их по назначению.

3. Описание работы регуляторов

Часто в системах автоматического регулирования величиной технологического параметра надо не только управлять, а так же ее надо регистрировать. Для этого многие регуляторы имеют дополнительный аналоговый выход. На него подается в заданном масштабе величина регулируемого параметра. Этот выход может быть заведен на вход регистрирующего прибора.

Точность регулирования

По этому параметру можно выделить общепромышленные и прецизионные регуляторы. В качестве примера можно привести прецизионный регулятор температуры ПРОТЕРМ.

Наличие интерфейса связи с другим оборудованием

Современные системы регулирования обычно являются частью крупных систем управления. Чтобы интегрировать регуляторы с остальным оборудованием или реализовать удобный интерфейс пользователя на операторской станции они должен иметь интерфейс связи. Самые простые регуляторы не имеют средств подключения. Наиболее распространенными интерфейсами для связи с верхним уровнем являются RS-232 и RS-485. Многие производители реализуют свой протокол обмена с регуляторами, но наиболее распространенным, можно сказать стандартным, стала поддержка протокола MODBUS RTU.

Наличие и качество алгоритмов автонастройки параметров системы регулирования

Это очень важная функция для создания системы автоматического регулирования на объекта, чьи динамические характеристики заранее не известны или сильно меняются во времени.

4 стр., 1540 слов

Устройство регулирования температуры и влажности в помещении

... чистого воздуха в помещение площадью 50 м², регулируемой температуры и относительной влажности. Функции, которые должен выполнять данное устройства: измерение относительной влажности и температуры воздуха в помещении, управление нагревательным прибором, вентилятором воздуха, самотестирование. Устройство должно поддерживать заданную температуру и относительную влажность воздуха в помещении ...

Число обслуживаемых контуров регулирования

Наиболее распространены регуляторы на один контур. Но в настоящее время все больше появляется многоконтурных регуляторов. Такие регуляторы часто позволяют реализовать взаимосвязанное регулирование параметров.

Питание регуляторов

Важным параметром является необходимость использования внешнего на 24В постоянного тока и наличие встроенного питания измерительных цепей.

Заключение

Пропорциональная составляющая является основой регулирующего воздействия для рассмотренного пневматического ПИД-регулятора.

Улучшая временную характеристику переходного процесса, вместе с тем снижаем устойчивость системы автоматического регулирования.

ПИД-регуляторы целесообразно применять в САР с большой инерцией. В качестве примеров таких систем можно назвать:

— бак (емкость), в который для заметного изменение уровня требуется налить или вылить большой объем жидкости;

— теплообменник, в котором внутренний теплообмен протекает медленно и датчик температуры работает с запаздыванием.

Пневматические П-, ПИ-, ПД- и ПИД-регуляторы, в основном, применяются в нефтегазохимической промышленности и в местах с повышенными требованиями к взрывобезопасности и пожарной безопасности.

Для надежной работы пневморегуляторов требуется выдерживать параметры сервисного воздуха, а также проводить регулярное техническое обслуживание, что сопряжено с дополнительными затратами по эксплуатации.

Воплощение различных структурных схем регуляторов значительно упростилось с появлением ПИД-регуляторов на базе микропроцессоров.

Как правило, в таких регуляторах сигнал рассогласования одновременно подается на параллельные ветви, формирующие пропорциональную, интегральную и дифференциальную составляющие, которые затем суммируются и усиливаются. Т.е. каждую ветвь возможно рассматривать как отдельный регулятор. Благодаря независимой работе, интегральная составляющая к концу переходного процесса полностью замещает пропорциональную составляющую.

Несмотря на все многообразие выпускаемых ПИД-регуляторов, принцип их действия остается неизменным.

Список литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/elektricheskie-regulyatoryi/

1. Щагин А.В. и др. Основы автоматизации техпроцессов. — М.: Высшее образование, 2009. — 163 с.

2. Голоденко Б.А. Имитационное моделирование в среде GPSS: пособие по курсовому проектированию. — Воронеж: МИКТ, 2007. — 112 с.

3. Alex Demyanenko, Control theory. PID Controller, — Copyright © 2007 — 2009

4. Битюков В.К., Волчкевич Л.И., Голоденко Б.А. Автоматизация технологических процессов промышленных производств: учебное пособие. — Воронеж: ВГТА, 2007. — 212 с.

5. Битюков В.К., Голоденко Б.А. Технология. Основные этапы и прогнозы развития: учебное пособие. — Воронеж: ВГТА, 2006. — 264 с.

6. Лазарев Ю. Моделирование процессов и систем в MATLAB. — СПб: Питер, 2005.

14 стр., 6524 слов

Моделирование электропривода

... все необходимые параметры для построения структурной модели системы электропривода постоянного тока, построенной по принципу подчиненного регулирования ... Т В 0,161 Динамические параметры регуляторов П-регулятор скорости Коэффициент передачи регулятора K RS 57,656 Постоянная времени ... 1.6) Рис. 1.6. Параметры модели и результат моделирования в виде переходных процессов скорости и момента двигателя ...