Электропередача постоянного тока

В мировой практике наиболее распространена передача электроэнергии переменным током. Но мощность, которую можно передать по таким линиям, особенно на большие расстояния, ограничивается многими факторами: предельной мощностью по условиям устойчивости, по нагреву проводников, потерями на корону и т.д.

Электропередачи постоянного тока (ППТ) предназначаются для транспорта больших количеств электроэнергии на дальние расстояния, передачи мощности через большие водные пространства по кабельным линиям и для связи между энергосистемами.

Связь отдельных электрических систем друг с другом посредством ППТ делает допустимой несинхронную совместную работу их на различных частотах. Направление потока мощности по линии передачи легко изменить автоматическим переключением в устройствах сеточного управления вентилей. Токи короткого замыкания в приемной системе переменного тока не могут возрастать при передаче электроэнергии постоянным током за счет передающей системы и наоборот, так как инвертор не подпитывает точку короткого замыкания. ППТ используются также для связи энергосистем в тех случаях, когда требуется иметь независимое регулирование частоты в каждой из объединенных систем.

Допустимая напряженность электрического поля для кабелей постоянного тока в 5— 6 раз выше, чем для кабелей переменного тока. Для примера можно сказать, что кабели, рассчитанные для работы с номинальным напряжением 35 кВ переменного тока, могут быть использованы для постоянного тока напряжением 200 кВ. Поэтому, несмотря на большую стоимость концевых устройств ППТ, передачи постоянного тока с кабельными линиями при длинах 30—40 км становятся соизмеримыми по стоимости с кабельными передачами переменного тока или даже выгоднее их ППТ с кабельными линиями высокого напряжения ±250 кВ эксплуатируются за рубежом (Англия, Новая Зеландия и др ).

Кратности внутренних перенапряжений на воздушных линиях постоянного тока ниже, чем для линий переменного тока. Это значит, что при одинаковых уровнях изоляции для ППТ можно применить более высокое напряжение. Конструкция линии ППТ много проще, чем линии переменного тока, меньше количество гирлянд изоляторов, меньше затрата металла Важно отметить также, что предел передаваемой мощности ППТ не зависит от длины электропередачи, как для переменного тока, поскольку устойчивость работы ППТ определяется в основном преобразователями (инверторами)

31 стр., 15499 слов

Электроснабжение железнодорожного предприятия (автоматизация ...

... железной дороги. Целью специального вопроса является совершенствование и автоматизация учёта электроэнергии. Целью экономического раздела является расчёт реконструкции электроснабжения ... кабельными линиями с напряжением 380/220 В. В основном срок эксплуатации кабельных линий (КЛ) депо составляет более 15…20 лет, в результате чего наблюдается их частый выход из работы. Система электроснабжения ...

В СССР впервые в мировой практике в 1965 г была осуществлена передача энергии постоянным током при напряжении ±400 кВ по воздушной биполярной линии Волгоград — Донбасс, связывающей Центральною и Южную энергосистемы Пропускная способность электропередачи 720 МВт, протяженность линии 473 км, ППТ Волгоград — Донбасс в настоящее время успешно работает в реверсивном режиме.

Обладая значительными достоинствами, передача электроэнергии постоянным током не лишена и крупных недостатков. Появляется необходимость в возведении сложных концевых подстанций с большим количеством преобразователей высокого напряжения и вспомогательной аппаратуры, меньшая надежность в работе из-за пропусков и обратных зажиганий в ртутных вентилях, требуется большая мощность установок для компенсации реактивной мощности преобразователей. Усложняется и удорожается промежуточный отбор мощности для электроснабжения районов, расположенных вдоль трассы линии передачи постоянного тока.

В экономическом отношении применение электропередач постоянного тока с воздушными линиями оправдывается при транспорте больших количеств энергии на дальние расстояния. Экономическая граница между передачами переменного и постоянного тока по дальности транспорта энергии лежит в пределах 800—1000 км — для передач без промежуточного отбора мощности и 1000—1400 км — с промежуточным отбором 25—50% передаваемой мощности. Чем больше передаваемая мощность, тем меньше граничное расстояние выгодности передачи мощности постоянным током.

Рис 1. Схема электропередачи энергии постоянным током с биполярной линией.

1 — трехо-бмоточный трансформатор (группа) с расщепленными обмотками СН и НН 2 — вольтодобавочный трансформатор 3 — вентильный мост, 4 — шунтирующий вентиль, 5 — шунтирующий аппарат 6 — линейный реактор, 7 — токоограничивающий реактор, 8 — конденсаторная батарея фильтр, 9 — синхронный компенсатор.

На рис. 1 представлена принципиальная схема ППТ. Вырабатываемый генераторами электростанции трехфазный переменный ток поступает в повысительный трансформатор 1, обмотки СН которого, работающие на выпрямительную установку, имеют различные соединения — звездой и треугольником. Переменный ток от каждой обмотки со сдвигом фаз в 30° поступает в выпрямительную установку, состоящую из вентилей (ртутных выпрямителей с сеточным управлением), включенных по мостовой схеме (рис. 2).

Таким образом, вся установка состоит из четырех мостов, в каждой фазе которых включено по два вентиля. Все вентильные мосты соединены последовательно (каскадная схема) Средняя точка четырех-мостовой схемы заземлена наглухо, образуя две полуцепи “полюс — земля” биполярной передачи. Каждая из полуцепей может оставаться в работе при выведенной другой полуцепи в ремонт или по другой причине. В этом случае передача будет работать по униполярной схеме с возвратом тока через землю и со сниженной вдвое мощностью.

Вентильный мост является основным агрегатом преобразовательной подстанции Подключенный к обмотке трехфазного трансформатора (рис. 13-6) он создает шестифазный режим выпрямления тока, а каскадное соединение двух мостов с подключением каждого моста к обмоткам трансформатора, имеющим сдвиг в 30° (соединенным звездой и треугольником), создает 12-фазный режим выпрямления. Выпрямленный ток поступает в двухпроводную линию и передается на приемную подстанцию. Для сглаживания пульсации выпрямленного тока в линии установлены реакторы с большим индуктивным сопротивлением, а для снижения амплитуды аварийного тока при обратном зажигании вентиля последовательно с обмотками трансформаторов, питающими выпрямительные мосты, установлены токоограничивающие реакторы. Параллельно каждому мосту включен шунтирующий вентиль и шунтирующий аппарат, назначение которых исключить из схемы мост в случае его повреждения.

4 стр., 1817 слов

Принцип работы машин постоянного тока конструкция машин постоянного тока

... небольшой и средней мощности наибольшее при-менение находят коллекторы на пластмассе. Рис. 4. Коллектор машины постоянного тока с металлическим ... обмотки напряжение генератора с ростом тока I будет возрастать. Уровень повышения напряжения генератора с ростом тока I зависит ... условиях работы показал, что правильно спроектированная и качественно изготовлен-ная машина постоянного тока является не менее ...

Для инвертирования постоянного тока, т. е. преобразования его в трехфазный, на приемной подстанций используют такие же управляемые

ртутные вентили, как и для выпрямления переменного тока. Мостовая схема соединения инверторной установки такая же, как у выпрямительной, но с обратным включением полюсов. Инвертор работает как быстродействующий переключатель, включающий каждую фазу понизительного трансформатора дважды за один период изменения напряжения приемной системы — при прямом и обратном его направлениях, и тем самым обусловливает протекание в цепи трансформатора переменного тока. Реактивная мощность, необходимая для инвертирования тока (около 0,55 квар на 1 кВт передаваемой мощности) и для покрытия потребности нагрузки, получается от конденсаторных батарей-фильтров, включенных на приемные шины инверторной подстанции. Эти же установки служат и для фильтрации высших гармоник инвертированного переменного тока. В случае необходимости дополнительно устанавливают также СК с присоединением его к третичной обмотке трансформатора.

Рис.2. Схема вентильного моста UН = 110 кВ

1 — вентиль; 2 — анодный реактор.

Современные мощные вентили изготавливаются на анодное испытательное напряжение 130 кВ и, следовательно, максимальное рабочее напряжение электропередачи, изображенной на рис. 13-5, составляет ±200 кВ. Чтобы получить в линии передачи более высокое напряжение, применяют последовательное включение большего количества мостов, а чтобы повысить надежность работы установки, вентили включают на половинное номинальное напряжение. Так, например, для линии передачи Волгоград—Донбасс напряжением ±400 кВ принято восемь вентильных мостов, включенных последовательно, с двумя вентилями в каждом плече моста, работающих при половинном номинальном напряжении.

При проектировании ППТ большой пропускной способности идут на параллельное включение вентилей в плече моста, что позволяет довести ток и мощности моста до требуемой величины. В настоящее время созданы полупроводниковые приборы (тиристоры), позволяющие построить выпрямительную аппаратуру на напряжение 1500 кВ. Так, например, преобразовательные подстанции электропередачи Экибастуз — Центр будут оборудованы уже не ртутными выпрямителями, а полупроводниковыми.

Эта электропередача, протяженностью 2400 км, напряжением 1500 кВ (±750 кВ) предназначается для передачи до 40 млрд. кВт -ч электрической энергии в год при мощности передачи до 6 млн. кВт. Электрическая энергия будет вырабатываться на пяти тепловых электростанциях мощностью по 4000- кВт, с энергоблоками по 500 МВт. Электростанции, первая из которых уже начата строительством, будут работать на местном буром угле.

Передача энергии из Итатского бассейна, где намечено построить десять электростанций по 6,4 млн. кВт с энергоблоками по 800 МВт, потребует применения для ППТ более высокого напряжения — 2200 кВ (±1000 кВ).

10 стр., 4908 слов

Методы и устройства для измерения высоких напряжений

... 17512 - 82 условий измерения, метод измерения шаровыми разрядниками обеспечивает достаточно высокую точность измерения постоянных, переменных и импульсных напряжений с длительностью фронта не менее 10-6 с. Погрешность измерения высоких напряжений не превышает ±3 % при ...

Передача электроэнергии постоянным током более перспективна, считают специалисты петербургского НИИ постоянного тока Наталья Георгиевна Лозинова и Михаил Иванович Мазуров.

Система электропередачи постоянного тока работает более устойчиво, уменьшаются потери в ЛЭП, отпадает необходимость в синхронизации работы электростанций. При этом не требуется замена основного оборудования действующих электростанций и трансформаторных подстанций.

В электропередачах постоянного тока (ППТ) отсутствуют многие факторы, свойственные электропередачам переменного тока и ограничивающие пропускную способность. Предельная мощность, передаваемая по ЛЭП постоянного тока, больше, чем у аналогичных ЛЭП переменного тока. Ограниченность применения ППТ связана главным образом с техническими трудностями создания эффективных недорогих устройств для преобразования переменного тока в постоянный (в начале линии) и постоянного тока в переменный (в конце линии).

Применение ППТ и вставок постоянного тока (ВПТ – подстанция, предназначенная для преобразования переменного тока в постоянный и последующего преобразования постоянного тока в переменный исходной или иной частоты) определяется их специфическими техническими характеристиками:

 с помощью ППТ (ВПТ) осуществляется несинхронная связь между энергосистемами, обеспечивающая возможность независимого регулирования частоты в каждой из них. Нарушения режима (КЗ, сбросы мощности, набросы нагрузки) в одной из объединенных энергосистем практически не сказываются на работе другой.

Через ППТ (ВПТ) могут объединяться энергосистемы, работающие с различной номинальной частотой (50 и 60 Гц) или разной идеологией поддержания частоты;

  •  быстродействующее регулирование преобразователей ППТ и ВПТ позволяет практически безынерционно изменять величину и направление потока мощности, благодаря чему такая связь свободна от нерегулируемых перетоков мощности и способна осуществлять передачу электроэнергии по заданной программе. Законы регулирования могут быть выбраны с большой степенью независимости от изменений режима (уровней напряжения, частоты) в связываемых энергосистемах. При необходимости специальные регуляторы могут использоваться, например, для поддержания частоты, демпфирования субгармонических колебаний, повышения устойчивости параллельных ВЛ переменного тока и т.д.;
  •  объединение энергосистем переменного тока или ввод дополнительной мощности в энергосистему через ППТ (ВПТ) не приводит к увеличению токов КЗ;
  •  для длинных ВЛ (наиболее протяженная из построенных ВЛ ППТ имеет длину 1730 км) нет ограничений передаваемой мощности по условиям нарушения устойчивости. Технические пределы нагрузки для воздушных и кабельных линий определяются только условиями теплового режима;
  •  по сравнению с ЛЭП переменного тока линии постоянного тока имеют в 1,5 раза меньшую зону отчуждения земли для трассы линии;
  •  ППТ обладают существенным по сравнению с ЛЭП переменного тока преимуществом в части надежности, так как вероятность одновременного отключения обоих полюсов ППТ более чем на порядок ниже вероятности отключения трехфазной линии;
  •  при передаче электроэнергии через широкие водные преграды (более 40–50 км) применение ППТ с подводным кабелем не имеет альтернативы.

ИСТОРИЯ И ТЕНДЕНЦИИ

20 стр., 9579 слов

Физика» «Работа совершаемая электрическим током

... напряжение, на которое рассчитаны эти устройства. Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать ... отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется ...

К настоящему времени в мире действует около 100 объектов постоянного тока общей мощностью около 75 ГВт. Достижения классической технологии ППТ и ВПТ связаны с работами, проведенными в бывшем СССР (НИИПТ, ВЭИ), Швеции (АВВ), Германии (Siemens), Японии (Toshiba).

Одной из крупнейших в мире должна была стать строившаяся в 80-х годах ППТ «Экибастуз – Центр». Ее мощность 6 ГВт, напряжение ±750 кВ и длина линии 2400 км значительно превосходили все известные на тот период ППТ. Распад СССР помешал доведению строительства до конца, но основное оборудование ППТ было создано и испытано на стендах. Это силовое оборудование (трансформаторы, вентили) на напряжение ±750 кВ, 12-фазный преобразовательный блок мощностью 1,5 ГВт, линейный реактор 4 Гн, 1000 А, фильтры высших гармоник на напряжение 500 кВ и синхронные компенсаторы мощностью 320 МВА.

В немалой степени конкуренция в производстве оборудования ППТ между СССР и странами Запада способствовала строительству и вводу в эксплуатацию в 1984-87 гг. самой большой в настоящее время в мире ППТ Itaipu в Бразилии. Эта ППТ мощностью 6,3 ГВт состоит из двух биполярных линий по 3,15 ГВт длиной примерно по 800 км каждая, с напряжением между полюсами ±600 кВ. Электропередача сооружена для связи самой мощной в мире ГЭС Itaipu (12,6 ГВт), совместно построенной Бразилией и Парагваем на реке Парана, с промышленным центром Бразилии Сан-Паулу. Поскольку электрические сети Бразилии имеют частоту 60 Гц, а сети Парагвая – 50 Гц, на ГЭС Itaipu было установлено по 9 генераторов с каждой из частот. Однако потребление Парагваем электроэнергии от ГЭС незначительно (~250 МВт), поэтому практически вся мощность 9 генераторов с частотой 50 Гц преобразуется на ППТ и передается в сети Бразилии [1].

Из числа построенных ВПТ по суммарной установленной мощности преобразователей в настоящее время самой большой в мире является Выборгская выпрямительно-инверторная подстанция (ВИП) электропередачи 330/400 кВ «Россия – Финляндия». Мощность всей линии после ввода в 2000 г. 4-го преобразовательного блока достигла 1400 МВт [2].

В то же время мощность единичного блока Выборгской ВИП составляет 350 МВт и по единичной мощности преобразовательных блоков она уступает некоторым зарубежным. В частности, на ВПТ Durnror («Австрия – Чехия») еще в 1983 г. был установлен преобразовательный блок мощностью 550 МВт, а выведенный в настоящее время из работы в резерв преобразователь на ВПТ Etzenricht (Германия) имеет наибольшую в мире мощность 600 МВт. Широкое применение (известно более 20 объектов) получили кабельные ППТ. В России первый практический опыт работы кабеля при постоянном напряжении был получен с пуском в 1950 году ППТ «Кашира – Москва». На этой линии применялся кабель общей длиной 30 км, с помощью которого, в частности, преодолевались и реки.

Наибольшую протяженность кабельного участка сейчас имеют ППТ между Швецией и Германией – 250 км и ППТ Basslink (Австралия) – 290 км. Ведутся проектные работы по более протяженным кабельным ППТ. Так, в Малайзии (проект Bakun) намечено [3] построить ППТ напряжением ±500 кВ, общей длиной 1330 км, с самым длинным кабельным участком 670 км. Ведется строительство ППТ между Нидерландами и Норвегией кабелем длиной 580 км. Наиболее мощная подводная КЛ постоянного тока с пропускной способностью 2,0 ГВт связывает энергосистемы Великобритании и Франции. Ее длина 70 км, номинальное напряжение ± 270 кВ. Более чем тридцатилетние наблюдения за показателями надежности существующих ППТ, проведенные рабочей группой 14-04 СИГРЭ, указывают, что энергетическая готовность ППТ всё время нарастала. Особенно заметный ее рост был связан с переходом от ртутных вентилей к тиристорным.

5 стр., 2462 слов

Чёрная металлургия мира (2)

... Бразилии " до 160 млн т, в Австралии превышало 130 млн т. В то же время в ряде стран с развитой черной металлургией, ... уровня 0,5 млрд т в год. Крупнейшими в мире экспортерами железорудного сырья являются Бразилия и Австралия. В число крупнейших экспортеров входил ... основного сырья. Примечание: 1 От 1/2 до 2/3 производимого в мире никеля, 3/5 хрома, 15"30% молибдена идет на производство спецсталей. 2 ...

Опыт эксплуатации Выборгской ВИП электропередачи «Россия – Финляндия» указывает на стабильно высокую энергетическую готовность как каждого блока (92%), так и всей вставки (99%).