Применение мехатронных систем на автомобильном, водном и воздушном транспорте

ПРИМЕНЕНИЕ МЕХАТРОННЫХ СИСТЕМ НА АВТОМОБИЛЬНОМ, ВОДНОМ И ВОЗДУШНОМ ТРАНСПОРТЕ

Мехатронные модули находят все более широкое применение в различных транспортных системах.

Жесткая конкуренция на автомобильном рынке вынуждает специалистов в этой области к поиску новых передовых технологий. На сегодняшний день, одной из главных проблем для разработчиков заключается в создании «умных» электронных устройств, способных сократить число дорожно-транспортных происшествий (ДТП).

Итогом работы в этой области стало создание системы комплексной безопасности автомобиля (СКБА), которая способна автоматически поддерживать заданную дистанцию, останавливать машину при красном сигнале светофора, предупреждать водителя о том, что он преодолевает поворот на скорости, более высокой, чем это допустимо законами физики. Были разработаны даже датчики удара с радиосигнализатором, который при наезде автомобиля на препятствие или столкновении вызывает машину скорой помощи.

Все эти электронные устройства предотвращения ДТП делятся на две категории. Первая включает приборы в автомобиле, действующие независимо от каких-либо сигналов внешних источников информации (других автомобилей, инфраструктуры).

Они обрабатывают информацию, поступающую от бортового радиолокатора (радара).

Вторая категория — системы, действие которых основано на данных, полученных от источников информации, расположенных вблизи дороги, в частности от маяков, которые собирают сведения о дорожной обстановке и передают их посредством инфракрасных лучей в проезжающие автомобили.

СКБА объединила новое поколение перечисленных выше устройств. Она принимает как сигналы радара, так и инфракрасные лучи «думающих» маяков, а в дополнение к основным функциям обеспечивает безостановочное и спокойное для водителя движение на нерегулируемых пересечениях дорог и улиц, ограничивает скорость движения на поворотах и в жилых районах пределами установленных скоростных лимитов. Как все автономные системы, СКБА требует, чтобы автомобиль был оборудован антиблокировочной системой тормозов (АБС) и автоматической коробкой передач.

СКБА включает лазерный дальномер, постоянно измеряющий расстояние между автомобилем и любым препятствием по ходу — движущимся или неподвижным. Если наезд вероятен, а водитель не замедляет скорость, микропроцессор дает команду сбросить давление на педаль акселератора, включить тормоза. Небольшой экран на панели приборов вспыхивает предупреждением об опасности. По желанию водителя бортовой компьютер может устанавливать безопасную дистанцию в зависимости от дорожного покрытия — влажного или сухого.

37 стр., 18305 слов

Автоматизированный тяговый электропривод трехосного городского ...

... действие непосредственно водителем. 2. ВЫБОР СИСТЕМЫ ЭЛЕКТРОПРИВОДА 2.1 Формулирование требований к автоматизированному электроприводу Электродвигатели системы управления и источники питания составляют тяговое электрооборудование. Требования к нему определяются условиями работы троллейбуса, для которых ...

СКБА способна управлять автомобилем, ориентируясь на белые линии разметки дорожного покрытия. Но для этого необходимо, чтобы они были четкими, поскольку постоянно «считываются» находящейся на борту видеокамерой. Обработка изображения затем определяет положение машины относительно линий, а электронная система в соответствии с этим воздействует на рулевое управление.

Бортовые приемники инфракрасных лучей СКБА действуют при наличии передатчиков, размещенных через определенные интервалы вдоль проезжей дороги. Лучи распространяются прямолинейно и на небольшое расстояние (примерно до 120 м), а данные, передаваемые закодированными сигналами, невозможно ни заглушить, ни исказить.

На рис. 3.2 представлен датчик погоды фирмы «Boch». В зависимости от модели внутрь помещают инфракрасный светодиод и один — три фотоприемника. Светодиод испускает невидимый луч под острым углом к поверхности ветрового стекла. Если на улице сухо, весь свет отражается обратно и попадает на фотоприемник (так рассчитана оптическая система).

Поскольку луч модулирован импульсами, то на посторонний свет датчик не среагирует. Но если на стекле есть капли или слой воды, условия преломления изменяются, и часть света уходит в пространство.

Рис. 3.1. Система комплексной безопасности автомобиля: 1 — приемник инфракрасных лучей; 2 — датчик погоды (дождь, влажность); 3 — привод дроссельной заслонки системы питания; 4 — компьютер; 5 — вспомогательный электроклапан в приводе тормозов; 6 — АБС; 7 — дальномер; 8 — автоматическая коробка передач; 9 — датчик скорости автомобиля; 10 — вспомогательным электроклапан рулевого управления; 11 — датчик акселератора; 12 — датчик рулевого управления; 13 — стол-сигнал; 14 — компьютер электронного видения; 15 — телевизионная камера; 16 — экран

Это фиксируется сенсором, и контроллер рассчитывает подходящий режим работы стеклоочистителя. Попутно данный прибор может закрыть электролюк в крыше, поднять стекла. Датчик имеет еще 2 фотоприемника, которые интегрированы в общий корпус с датчиком погоды. Первый предназначен для автоматического включения фар, когда смеркается или автомобиль въезжает в тоннель. Второй, переключает «дальний» и «ближний» свет. Задействованы ли эти функции, зависит, от конкретной модели автомобиля.

Рис. 3.2. Принцип работы датчика погоды

Антиблокировочные тормозные системы (АБС), ее необходимые компоненты — датчики скорости колеса, электронный процессор (блок управления), сервоклапаны, гидравлический насос с электрическим приводом и аккумулятор давления. Некоторые ранние АБС были «трехканальные», т.е. управляли передними тормозными механизмами индивидуально, но растормаживали полностью все задние тормозные механизмы при начале блокирования любого из задних колес. Это экономило некоторое количество стоимости и усложнения конструкции, но дало более низкую эффективность по сравнению с полной четырехканальной системой, в которой каждый тормозной механизм управляется индивидуально.

13 стр., 6409 слов

Устройство стендов для диагностирования тормозной системы автомобиля

... тормозных систем автомобиля. Он состоит из четырех подвижных платформ с рифленой поверхностью, датчиков перемещения и пульта управления. Методика испытаний на площадочном стенде состоит в следующем: автомобиль разгоняют до скорости ... площадочного (инерционного) тормозного стенда: Где: 1 - площадки; 2 - датчики перемещения площадки; 3 - опорные катки площадки; 4 - колесо автомобиля; 5 - возвратная ...

АБС имеет много общего с противобуксовочной системой (ПБС), чье действие могло бы рассматриваться как «АБС наоборот», так как ПБС работает по принципу обнаружения момента начала быстрого вращения одного из колес по сравнению с другим (момента начала пробуксовывания) и подачи сигнала на притормаживание этого колеса. Датчики скорости колеса могут быть общими, и поэтому наиболее эффективный способ предотвращать пробуксовку ведущего колеса уменьшением его скорости состоит в том, чтобы применить мгновенное (и если необходимо, повторное) действие тормоза, тормозные импульсы могут быть получены от блока клапанов АБС. В действительности, если присутствует АБС, это все, что требуется, чтобы обеспечить и ПБС — плюс некоторое дополнительное программное обеспечение и дополнительный блок управления, чтобы уменьшить при необходимости крутящий момент двигателя или сократить количество подводимого топлива, или осуществить прямое вмешательство в систему управления педалью газа.

На рис. 3.3 представлена схема электронной системы питания автомобиля: 1 — реле зажигания; 2 — центральный переключатель; 3 — аккумуляторная батарея; 4 — нейтрализатор отработавших газов; 5 — датчик кислорода; 6 — воздушный фильтр; 7 — датчик массового расхода воздуха; 8 — колодка диагностики; 9 — регулятор холостого хода; 10 — датчик положения дроссельной заслонки; 11 — дроссельный патрубок; 12 — модуль зажигания; 13 — датчик фаз; 14 — форсунка; 15 — регулятор давления топлива; 16 — датчик температуры ОЖ; 17 — свеча; 18 — датчик положения коленвала; 19 — датчик детонации; 20 — топливный фильтр; 21 — контроллер; 22 — датчик скорости; 23 — топливный насос; 24 — реле включения топливного насоса; 25 — бензобак.

Одной из составных частей СКБА является подушка безопасности (airbag) (см. рис. 3.4), элементы которой размещены в разных частях автомобиля. Инерционные датчики, находящиеся в бампере, у моторного щита, в стойках или в районе подлокотника (в зависимости от модели автомобиля), в случае аварии посылают сигнал на электронный блок управления. В большинстве современных СКБА фронтальные датчики рассчитаны на силу удара на скорости от 50 км/ч. Боковые срабатывают при более слабых ударах.

От электронного блока управления сигнал следует на основной модуль, который состоит из компактно уложенной подушки, соединенной с газогенератором. Последний представляет собой таблетку диаметром около 10 см и толщиной около 1 см с кристаллическим азотгенерирующим веществом.

Рис. 3.3. Упрощенная схема системы впрыска

Электрический импульс поджигает в «таблетке» пиропатрон или плавит проволоку, и кристаллы со скоростью взрыва превращаются в газ. Весь описанный процесс происходит очень быстро. «Средняя» подушка наполняется за 25 мс. Поверхность подушки европейского стандарта мчится навстречу грудной клетке и лицу со скоростью около 200 км/ч, а американского — около 300. Поэтому в машинах, оборудованных подушкой безопасности, производители настоятельно советуют пристегиваться и не сидеть вплотную к рулю или торпедо. В наиболее «продвинутых» системах есть устройства, идентифицирующие наличие пассажира или детского кресла и, соответственно, либо отключающие, либо корректирующие степень надувания.

Рис. 3.4. Автомобильная подушка безопасности:

1 — натяжное устройство ремня безопасности; 2 — надувная подушка безопасности; 3 — надувная подушка безопасности; для водителя; 4 — блок управления и центральный датчик; 5 — исполнительный модуль; 6 — инерционные датчики

Помимо обычных автомобилей большое внимание уделяется созданию легких транспортных средств (ЛТС) с электроприводом (иногда их называют нетрадиционными).

К этой группе транспортных средств относятся электровелосипеды, роллеры, инвалидные коляски, электромобили с автономными источниками питания. Разработку таких мехатронных систем ведет Научно-инженерный центр «Мехатроника» в кооперации с рядом организаций.

ЛТС являются альтернативой транспорту с двигателями внутреннего сгорания и используются в настоящее время в экологически чистых зонах (лечебно-оздоровительных, туристических, выставочных, парковых комплексах), а также в торговых и складских помещениях. Рассмотрим технические характеристики опытного образца электровелосипеда:

  • максимальная скорость 20 км/час;
  • номинальная мощность привода 160 Вт;
  • номинальная частота вращения 160 об/мин;
  • максимальный крутящий момент 18 Нм;
  • масса двигателя 4.7 кг;
  • аккумуляторная батарея 36В, 6 А*ч;
  • максимальная нагрузка 120 кг;
  • движение в автономном режиме 20 км.

Основой для создания ЛТС являются мехатронные модули типа «мотор-колесо» на базе, как правило, высокомоментных электродвигателей. В табл.3.1 приведены технические характеристики мехатронных модулей движения для легких транспортных средств. Мировой рынок ЛТС имеет тенденцию к расширению и по прогнозам его емкость к 2000 году составляла 20 млн. единиц или в стоимостном выражении 10 млрд. долларов.

Таблица 3.1

ЛТС с электроприводом

Технические показатели

Максимальная скорость, км/ч

Рабочее напряжение, В

Мощность, кВт

Номинальный момент, Нм

Номинальный ток, А

Масса, кг

Кресла — коляски

6

24

0,15

25

8

10

Электро-велосипеды

15

24

0,3

20

15

12

Роллеры

30

24

0,5

15

20

12

Мини -электромобили

80

110

2,5

30

28

25

Морской транспорт. МС находят все более широкое применение для интенсификации труда экипажей морских и речных судов, связанных с автоматизацией и механизацией основных технических средств, к которым относятся главная энергетическая установка с обслуживающими системами и вспомогательными механизмами, электроэнергетическая система, общесудовые системы, рулевые устройства и двигатели.

Комплексные автоматические системы удержания судна на заданной траектории (СУЗТ) или судна, предназначенного для исследования Мирового океана, на заданной линии профиля (СУЗП) относятся к системам, обеспечивающим третий уровень автоматизации управления. Применение таких систем позволяет:

  • повысить экономическую эффективность морских транспортных перевозок за счет реализации наилучшей траектории, движения судна с учетом навигационных и гидрометеорологических условий плавания;
  • повысить экономическую эффективность океанографических, гидрографических и морских геологоразведочных работ за счет увеличения точности удержания судна на заданной линии профиля, расширения диапазона ветроволновых возмущений, при которых обеспечивается требуемое качество управления, и увеличения рабочей скорости судна;
  • решать задачи реализации оптимальной траектории движения судна при расхождении с опасными объектами; повысить безопасность мореплавания вблизи навигационных опасностей за счет более точного управления движением судна. мехатронный модуль транспортное средство

Комплексные автоматические системы управления движением по заданной программе геофизических исследований (АСУД) предназначены для автоматического выведения судна на заданную линию профиля, автоматического удержания геолого-геофизического судна на исследуемой линии профиля, маневрирования при переходах с одной линии профиля на другую. Рассматриваемая система позволяет повысить эффективность и качество морских геофизических исследований.

В морских условиях невозможно применение обычных методов предварительной разведки (поисковая партия или детальная аэрофотосъемка), поэтому наиболее широкое распространение получил сейсмический метод геофизических исследований (рис. 3.5).

Геофизическое судно 1 буксирует на кабель-тросе 2 пневматическую пушку 3, являющуюся источником сейсмических колебаний, сейсмографную косу 4, на которой размещены приемники отраженных сейсмических колебаний, и концевой буй 5. Профили дна определяют посредством регистрации интенсивности сейсмических колебаний, отраженных от пограничных слоев 6 различных пород.

Рис. 3.5. Схема проведения геофизических исследований

Для получения достоверной геофизической информации судно должно удерживаться на заданном положении относительно дна (линии профиля) с высокой точностью, несмотря на малую скорость движения (3-5 уз) и наличие буксируемых устройств значительной длины (до 3 км) с ограниченной механической прочностью.

Фирмой «Анжутц» разработана комплексированная МС, обеспечивающая удержание судна на заданной траектории. На рис. 3.6 представлена структурная схема этой системы, в которую входят: гирокомпас 1; лаг 2; приборы навигационных комплексов, определяющих положение судна (два и более) 3; авторулевой 4; мини-ЭВМ 5 (5а — интерфейс, 5б — центральное запоминающее устройство, 5в — центральный процессорный блок); считыватель перфоленты 6; графопостроитель 7; дисплей 8; клавиатура 9; рулевая машина 10.

С помощью рассматриваемой системы можно автоматически вывести судно на запрограммированную траекторию, которая задается оператором с помощью клавиатуры, определяющей географические координаты точек поворота. В этой системе независимо от информации, поступающей от какой-либо одной группы приборов традиционного радионавигационного комплекса или устройств спутниковой связи, определяющей положение судна, вычисляются координаты вероятного положения судна по данным, выдаваемым гирокомпасом и лагом.

Рис. 3.6. Структурная схема комплексированной МС удержания судна на заданной траектории

Управление курсом с помощью рассматриваемой системы осуществляется авторулевым, на вход которого поступает информация о величине заданного курса ?зад, формируемая мини-ЭВМ с учетом ошибки по положению судна. Система собрана в пульте управления. В верхней его части размещен дисплей с органами настройки оптимального изображения. Ниже, на наклонном поле пульта, расположен авторулевой с рукоятками управления. На горизонтальном поле пульта находится клавиатура, при помощи которой осуществляется ввод программ в мини-ЭВМ. Здесь же размещен переключатель, с помощью которого производится выбор режима управления. В цокольной части пульта расположены мини-ЭВМ и интерфейс. Вся периферийная аппаратура размещается на специальных подставках или других пультах. Рассматриваемая система может работать в трех режимах: «Курс», «Монитор» и «Программа». В режиме «Курс» осуществляется удержание заданного курса с помощью авторулевого по показаниям гирокомпаса. Режим «Монитор» выбирается тогда, когда готовится переход на режим «Программа», когда этот режим прерывается или когда переход по данному режиму закончен. На режим «Курс» переходят, когда обнаруживаются неисправности мини-ЭВМ, источников питания или радионавигационного комплекса. В этом режиме авторулевой работает независимо от мини-ЭВМ. В режиме «Программа» происходит управление курсом по данным радионавигационных приборов (датчиков положения) или гирокомпаса.

Обслуживание системы удержания судна на ЗТ осуществляется оператором с пульта. Выбор группы датчиков для определения положения судна производится оператором по рекомендациям, представленным на экране дисплея. В нижней части экрана приводится список всех разрешенных для данного режима команд, которые могут вводиться с помощью клавиатуры. Случайное нажатие какой-либо запрещенной клавиши блокируется ЭВМ.

Авиационная техника. Успехи, достигнутые в развитии авиационной и космической техники с одной стороны и необходимость снижения стоимости целевых операций с другой, стимулировали разработки нового вида техники — дистанционно пилотируемых летательных аппаратов (ДПЛА).

На рис. 3.6 представлена структурная схема системы дистанционного управления полетом ДПЛА — HIMAT. Основной компонентой системы дистанционного пилотирования HIMAT является наземный пункт дистанционного управления. Параметры полета ДПЛА поступают в наземный пункт по линии радиосвязи от летательного аппарата, принимаются и декодируются станцией обработки телеметрии и передаются в наземную часть вычислительной системы, а также на приборы индикации информации в наземном пункте управления. Кроме этого, с борта ДПЛА поступает отображаемая с помощью телевизионной камеры картина внешнего обзора. Телевизионное изображение, высвечиваемое на экране наземного рабочего места человека-оператора, используется для управления летательным аппаратом при воздушных маневрах, заходе на посадку и при самой посадке. Кабина наземного пункта дистанционного управления (рабочее место оператора) оборудована приборами, обеспечивающими индикацию информации о полете и состоянии аппаратуры комплекса ДПЛА, а также средствами для управления летательным аппаратом. В частности, в распоряжении человека-оператора имеются ручки и педали управления летательным аппаратом по крену и тангажу, а также ручка управления двигателем. При выходе из строя основной системы управления подача команд системы управления происходит посредством специального пульта дискретных команд оператора ДПЛА.

В качестве автономной навигационной системы, обеспечивающей счисление пути, используются доплеровские измерители путевой скорости и угла сноса (ДПСС).

Такая навигационная система используется совместно с курсовой системой, измеряющей курс датчиком вертикали, формирующим сигналы крена и тангажа, и бортовой ЭВМ, реализующей алгоритм счисления пути. В совокупности эти устройства образуют доплеровскую навигационную систему (см. рис. 3.7).

Что бы повысить надежность и точность измерения текущих координат летательного аппарата, ДИСС может объединяться с измерителями скорости.

Рис. 3.6. Система дистанционного пилотирования ДПЛА HIMAT:

1- носитель В-52; 2 — резервная система управления на самолете TF-104G; 3 — линия телеметрической связи с землей; 4 — ДПЛА HIMAT; 5 — линии телеметрической связи с ДПЛА; 5 — наземный пункт дистанционного пилотирования

Рис. 3.7. Схема доплеровской навигационной системы