Электрическая мощность

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt ), Q — количество зарядов, прошедших от А к B за время Δt . А — работа, совершенная Q зарядами при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:

Электрическая мощность 1

Для единичного заряда на участке A-B:

Электрическая мощность 2

Для всех зарядов:

Электрическая мощность 3

Поскольку ток есть ничто иное, как количество зарядов в единицу времени, то есть Электрическая мощность 4 по определению, в результате получаем:

Электрическая мощность 5

Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:

мгновенная электрическая мощность p (t) , выделяющаяся на участке электрической цепи есть произведение мгновенных значений напряжения u (t) и силы тока i (t) на этом участке:

Электрическая мощность 6

Если участок цепи содержит резистор c электрическим сопротивлением R , то

Электрическая мощность 7


2. Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то среднюю мощность можно вычислить по формулам:

Электрическая мощность 8

3. Мощность переменного тока

В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.


3.1. Активная мощность

Среднее за период Т значение мгновенной мощности называется активной мощностью: Электрическая мощность 9. В цепях однофазного синусоидального тока Электрическая мощность 10 , где U и I — действующие значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную).

Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле Электрическая мощность 11 . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением Электрическая мощность 12 . Единица активной мощности — ватт (W , Вт ).

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.


3.2. Реактивная мощность

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению действующих значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).

Единица реактивной мощности — вольт-ампер реактивный (var , вар ).

Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: Электрическая мощность 13. Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения).

В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Q = UI sin φ

Q = UI sin φ

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Q = UI sin φ


3.3. Полная мощность

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U×I ; связана с активной и реактивной мощностями соотношением: Электрическая мощность 14 , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0 , а при ёмкостной Q < 0 ).

Единица полной электрической мощности — вольт-ампер (V*A , В*А ).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: Электрическая мощность 15


3.4. Неактивная мощность

Неактивная мощность

Под мощностью гармоники тока понимается произведение действующего значение силы тока данной гармоники на действующее значение напряжения.

Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный).

Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной. _______________________________________________________________________________________


3.5. Связь неактивной, активной и полной мощностей

Величину неактивной мощности обозначим . Через обозначим вектор тока, через — вектор напряжения. Буквами и будем обозначать соответствующие действующие значения:

Неактивная мощность 1 ,

Неактивная мощность 2 .

Представим вектор тока в виде суммы двух ортогональных составляющих Неактивная мощность 3 и , которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть Неактивная мощность 4, где — некоторая константа, а пассивная — ортогональна, то есть Неактивная мощность 5. Имеем

Неактивная мощность 6 .

Запишем выражение для активной мощности , скалярно умножив последнее равенство на :

Неактивная мощность 7 .

Отсюда находим Неактивная мощность 8 ,

Неактивная мощность 9 .

Выражение для величины неактивной мощности имеет вид Неактивная мощность 10 , где — полная мощность.

Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность: Неактивная мощность 11 .

Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.


4. Измерения

  • Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
  • Для измерения коэффициента реактивной мощности применяют фазометры
  • Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ


Литература

[Электронный ресурс]//URL: https://drprom.ru/referat/moschnost-toka/

  • ГОСТ 8.417-2002 Единицы величин
  • ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
  • Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
  • Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.

6. Дополнительная литература

[Электронный ресурс]//URL: https://drprom.ru/referat/moschnost-toka/

  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
  • Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
  • Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
  • Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
  • Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
  • Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
  • Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.

Данный реферат составлен на основе .