Реактивные двигатели

Реферат

В нашей повседневной жизни мы часто сталкиваемся с реактивным движением. Реактивные двигатели приводят в движение самолеты, космические корабли и даже автомобили. Даже шарик, который, спускаясь, беспорядочно движется, совершает реактивное движение, и в своем роде является реактивным двигателем. Но едва ли многие нас осознают природу и причины этого движения. Нас заинтересовала эта тема и мы решили разобраться с этой проблемой. Мы рассмотрели, что представляет из себя реактивный двигатель, изучили историю его возникновения и практическое применения реактивных двигателей в наши дни.

1. Что такое реактивный двигатель?

Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная).

Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. — преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца).

Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р. д. в качестве первичной чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы — продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

31 стр., 15105 слов

Физическая основа и виды тепловых двигателей

... энергию течения воды в реках для вращения водяных колес. Эти колеса перекачивали и поднимали воду или приводили в действие различные механизмы. История появления тепловых двигателей ... авиации - поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не ... двигателей скоростного транспорта. Именно это и побудило меня к написанию этого реферата. ...

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса — воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД).

Все ВРД — тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Основные характеристики Р. д.: реактивная тяга, удельный импульс — отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 сек, или идентичная характеристика — удельный расход топлива (количество топлива, расходуемого за 1 сек на 1 н развиваемой Р. д. тяги), удельная масса двигателя (масса Р. д. в рабочем состоянии, приходящаяся на единицу развиваемой им тяги).

Для многих типов Р. д. важными характеристиками являются габариты и ресурс.

Тяга — сила, с которой Р. д. воздействует на аппарат, оснащенный этим Р. д., — определяетсяпо формуле

P = mW c + Fc (pc — pn ),

где m — массовый расход (расход массы) рабочего тела за 1 сек; W c — скорость рабочего тела в сечении сопла; Fc — площадь выходного сечения сопла; pc — давление газов в сечении сопла; pn — давление окружающей среды (обычно атмосферное давление).

Как видно из формулы, тяга Р. д. зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащенного Р. д., над уровнем моря, если речь идёт о полёте в атмосфере Земли. Удельный импульс Р. д. прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения).

Тяга существующих Р. д. колеблется в очень широких пределах — от долей гс у электрических до сотен тс у жидкостных и твёрдотопливных ракетных двигателей. Р. д. малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Максимальная тяга ВРД достигает 28 тс (1974).

9 стр., 4455 слов

Реактивные двигатели и основы тепловой машины

... заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль». 1. Основная часть 1.1 История открытия реактивных двигателей 1. История реактивных двигателей неразрывно связана с историей ... самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием. Работы по этой тематике неспешно продолжались почти до конца войны, когда. Третий ...

Эти Р. д., использующие в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Историю и перспективы развития отдельных видов Р. д. и лит. см. в статьях об этих двигателях.

2. Коэффициент полезного действия

Коэффициент полезного действия (кпд>

  • , характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии;
  • определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой;
  • обозначается обычно

h = W пол /Wcyм.

В электрических <двигателях> <кпд> — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых <двигателях> — отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой. Для вычисления <кпд> разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие <кпд> позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и <двигатели>, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.

Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. <кпд> всегда меньше единицы. Соответственно этому <кпд> выражается в долях затрачиваемой энергии, т. е. в виде правильной дроби или в процентах, и является безразмерной величиной. <Кпд> тепловых электростанций достигает 35—40%, <двигателей> внутреннего сгорания — 40—50%, динамомашин и генераторов большой мощности—95%, трансформаторов—98%. <Кпд> процесса фотосинтеза составляет обычно 6—8%, у хлореллы он достигает 20—25%. У тепловых <двигателей> в силу второго начала термодинамики <кпд> имеет верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим <кпд> обладает Карно цикл.

Различают <кпд> отдельного элемента (ступени) машины или устройства и <кпд>, характеризующий всю цепь преобразований энергии в системе. <Кпд> первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и др. виды <кпд>. Общий <кпд> системы равен произведению частных <кпд>, или <кпд> ступеней.

19 стр., 9072 слов

Воздушно-реактивный двигатель

... имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, ... серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт ...

В технической литературе <кпд> иногда определяют т. о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять <кпд> отношением

W пол /Wзатр ,

где W пол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты. Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный <кпд> установки меньше единицы, рассмотренный

кпд h = W пол /Wзатр

может оказаться больше единицы.

3. История возникновения реактивных двигателей, А)Первые представления о реактивном движении

Еще в первом веке до нашей эры, одним из великих ученых древней Греции, Героном Александрийским был написан трактат «Пневматика». В нем описывались машины использовавшие энергию тепла.

Под номером 50 описывается устройство под названием Эолипил — шар «Эола».

Данное устройство представляло собой бронзовый котел, установленный на опоры. От крышки котла вверх поднимались две трубки, на которых крепилась сфера. Трубки соединялись со сферой таким образом, что она могла свободно вращаться в месте соединения. При этом по этим трубка в сферу мог поступать пар из котла. Из сферы выходили две трубки изогнутые так, что пар, выходивший из них, вращал сферу.

Принцип работы устройства был прост. Под котлом разводили огонь, и когда вода начинала кипеть, пар через трубки поступал в сферу, откуда под давлением вырывался наружу, раскручивая сферу.

Принято считать, что Эолипил в древней Греции использовался только с целью развлечения. Фактически, Эолипил являлся первой известной нам паровой турбиной.

Далее стоит отметить изобретение «ракет» китайцами в XIII веке. Сперва они использовались для фейерверков, но затем стали применяться и в боевых целях.

После этого история развития реактивных двигателей остановилась на несколько сотен лет.

В 1500 году в чертежах Леонардо да Винчи встречается «дымовой зонт». Горячий воздух от огня поднимается через ряд лопастей, которые соединены между собой и вращают вертел для жарки.

Несмотря на несколько попыток создания реактивного двигателя в XIX веке, по-настоящему это удалось лишь в XX веке.

Б)Создание первых реактивных двигателей

В 1903 К. Э. Циолковский в работе «Исследование мировых пространств реактивными приборами» впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели — ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П.

В 1908 году Рене Лорин запатентовал воздушно-реактивный двигатель (ВРД).

6 стр., 2876 слов

Реактивный двигатель принцип работы

... план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности. Источник [Электронный ресурс]//URL: https://drprom.ru/referat/vidyi-reaktivnyih-dvigateley/ Реферат: Реактивный двигатель , Выполнил: Мельников ...

Лорин опубликовал свои разработки в 1913 году, но не смог завершить начатое, так и не построив своё изобретение из-за невозможности достижения скорости, необходимой для надлежащего функционирования.

Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ).

В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33.

В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя? была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания).

Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина «Теория воздушно-реактивного двигателя», опубликованная в 1929.

Первый турбиновинтовой самолет Jendrassik CS-1 был изобретен Венгерским инженер-механиком Джорджем Яндрессиком (Gyцrgy Jendrassik).

Он был изготовлен и испытан на заводе Ганц в Будапеште в период с 1938 по 1942 год.

В)Дальнейшее развитее реактивных двигателей

Во второй половине XX века началась активная разработка реактивных двигателей. В 1947 году американским пилотом Чарльзом Йегером на экспериментальном самолете Bell X-1 был преодолен звуковой барьер.

По другую сторону железного занавеса работа так же шла полным ходом. Результаты её были грандиозными — 4 октября 1957 года под руководством главного конструктора Королева С.П. был запущен первый искусственный спутник Земли, а через 4 года человек впервые оказался в космосе. В настоящее время реактивные двигатели широко используются в космической промышленности и в авиации, как в военной, так и в пассажирской.

4. Практическое применение реактивных двигателей

Р. д. имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р. д. используются на летательных аппаратах различных типов.

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта).

Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

14 стр., 6968 слов

Воздушно-реактивный двигатель (2)

... как правило, для приведения в движение воздушных летательных аппаратов. принцип работа воздух реактивный двигатель 1. История История ВРД неразрывно связана с историей авиации. Прогресс в авиации ... похоронила проект. Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит. Самолёт-снаряд с ПуВРД Фау-1. ( ...

5. Окружающая среда

Тепловые двигатели (в том числе и реактивный) — необходимый атрибут современной цивилизации. С их помощью вырабатывается ? 80% электроэнергии. Без тепловых двигателей невозможно представить современный транспорт. В тоже время повсеместное использование тепловых двигателей связано с отрицательным воздействием на окружающую среду.

Сжигание топлива сопровождается выделением в атмосферу углекислого газа, способного поглощать тепловое инфракрасное (ИК) излучение поверхности Земли. Рост концентрации углекислого газа в атмосфере, увеличивая поглощение ИК — излучения, приводит к повышению её температуры (парниковый эффект).

Ежегодно температура атмосферы Земли повышается на 0,05 єС. Этот эффект может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана.

Продукты сгорания топлива существенно загрязняют окружающую среду.

Углеводороды, вступая в реакцию с озоном, находящимся в атмосфере, образуют химические соединения, неблагоприятно воздействующие на жизнедеятельность растений, животных и человека.

Потребление кислорода при горении топлива уменьшает его содержание в атмосфере.

Для охраны окружающей среды широко использует очистные сооружения, препятствующие выбросу в атмосферу вредных веществ, резко ограничивают использование соединений тяжелых металлов, добавляемых в топливо, разрабатывают

Двигатели, использующие водород в качестве горючего ( выхлопные газы состоят из безвредных паров воды), создают электромобили и автомобили, использующие солнечную энергию.

Заключение

Таким образом, мы узнали принцип работы реактивного двигателя. Узнали о истории его создания, которая уходит корнями в античность и продолжается по наши дни. Рассмотрели случаи практического применения реактивных двигателей и их последствия. Без реактивных двигателей невозможно представить современную авиацию и освоение космоса.