Нормальный закон распределения

Реферат

Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нор­мальное распределение снова открыли и изучили К.Гаусс (1809 г.) и -П.Лаплас, которые пришли к нормальной функции в связи с ра­ботой по теории ошибок наблюдений.

Цельих объяснения механизма формирования нормально распределенных случайных величин заключается в следующем. Постулируется, что зна­чения исследуемой непрерывной случайной величины формируются под воздействием очень большого числа независимых случайных факторов, при­чем сила воздействия каждого отдельного фактора мала и не может прева­лировать среди остальных, а характер воздействия — аддитивный (т.е. при воздействии случайного фактора F на величину а получается вели­чина ___________, где случайная «добавка» ______ мала и равновероятна по знаку).

Во многих случайных величинах, изучаемых в технике и других областях, естественно видеть суммарный аддитивный эффект большого числа независимых причин. Но центральное место нормального закона не следует объяснять его универсальной приложимостью.

В этом смысле нормальный закон — один из многих типов распределения, имеющихся в природе, однако с относительно большим удельным весом практической приложимости.

Однако полнота теоретических исследований, относящихся к нормаль­ному закону, а также сравнительно простые математические свойства де­лают его наиболее привлекательным и удобным в применении. Даже в слу­чае отклонения исследуемых экспериментальных данных от нормального закона существует, по крайней мере, два пути его целесообразной эксплуатации: во-первых, использовать нормальный закон в качестве пер­вого приближения (при атом нередко оказывается, что подобное допуще­ние дает достаточно точные с точки зрения конкретных целей исследова­ния результаты); во-вторых. подобрать такое преобразование исследуемой случайной величины, которое видоизменяет исходный «не нормальные» закон распределения, превращая его в нормальный.

Удобно для статистических приложений и свойство «самовоспроизводимости» нормального закона, заключающееся в том, что сумма любого числа нормально распределенных случайных величин тоже подчиняется нормальному закону распределения. Кроме того, с помощью закона нор­мального распределения выведен целый ряд других важных распределений, построены различные статистические критерии

5 стр., 2068 слов

Что такое случайная величина

... представление дифференциального закона распределения с.в. Заметим, что дифференциальный закон распределения случайной величины не является универсальным - он применим исключительно к непрерывным случайным величинам. Одним из часто используемых на практике законов, является нормальный закон распределения - закон распределения Гаусса. Закон характеризует ...

1.1. Нормальное распределение

нормальное (гауссовское) распределение.

 нормальное распределение 1

1.2. Статистическая гипотеза

Часто необходимо знать закон распределения генеральная совокуп­ности. Если он неизвестен, но есть основания предположить, чтоон имеет определенный вид (назовем его А), выдвигают гипотезу: генераль­ная совокупность распределена по закону А. Таким образом, в этой ги­потезе речь вдет о виде предполагаемого распределения.

Возможен случай, когда закон распределения известен, а его параметры неизвестны. Если есть основания предположить, то неизвестный параметр Q равен определенному значению Q 0 , выдвигают гипотезу: Q = Q 0 . Таким образом, в этой гипотезе речь идет о предполагаемой величине параметра одного известного распределения.

Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и многие другие.

Статистической

Например статистическими будут гипотезы; генеральная распределена по закону Пуассона, дисперсии двух нормальных совокупностей равны между собой.

В первой гипотезе сделано предположение о виде неизвестного распределения, во второй — о параметрах двух известных распределений.

Наряду с выдвинутой гипотезой рассматривают и противоречивую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, имеет место противоречащая гипотеза. По этой причине эти гипотезы необходимо различать.

Н 0 .

Н 1

1.3. Ошибки первого и второго рода. Уровень значимости

Выдвинутая гипотеза может быть правильной или неправильной, поэ­тому возникает необходимость проверить ее. Поскольку проверку произво­дят статистическими методами, ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов.

Ошибка первого рода состоит в том, что будет отвергнута правиль­ная гипотеза.

Ошибка второго рода состоит в том» что будет принята неправильная гипотеза.

Правильное решение может быть принято также в двух случаях: гипотеза принимается; причем и в действительности она правильная; гипотеза отвергается, причем и в действительности она неверна.

Вероятность совершить ошибку первого рода принято обозначать q . Ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значи­мости, равный 0,05, то это означает, что в пяти случаях из ста мы рис­куем допустить ошибку первого рода (отвергнуть правильную гипотезу).

1.4. Степень свободы параметра

— Степень свободы у какого-либо параметра определяют числом опы­тов, по которым рассчитывают данный параметр, за вычетом количества констант, найденных по этим опытам независимо друг от друга.

4 стр., 1590 слов

Гипотеза и индуктивные методы исследования. Методы проверки и ...

... сущность гипотезы и индуктивных методов исследования; Изучить проблему проверяемости научных положений; Рассмотреть трудности при подтверждении и опровержении гипотез. Объектом исследования являются гипотеза и индуктивные методы исследования. Предметом исследования являются методы проверки и подтверждения гипотез. При написании работы были использованы следующие методы исследования: аналогии, ...

1.5. Критическая область. Область принятия гипотезы .

Для проверки нулевой гипотеза используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Ее обозначают t если она распределена по закону Стюдента, X 2 — по закону «хи квадрат», F по закону Фишера, G по закону Кохрэна. Обозначим эту величину К

Статистическим критерием (или просто критерием) называется случайная величина К, служащая для проверки нулевой гипотезы.

Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин и таким образом получают частное (наблюдаемое) значение критерия.

набл

После выбора определенного критерия множество всех его возможных значений разбивают на два непересекающихся подмножества; одноиз них содержит значения критерия, при которых нулевая гипотеза отверга­ется, а другое — при которых она принимается.

Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают.

Областью принятия гипотезы (областью допустимых значений)называ­ют совокупность значений критерия, при которых гипотезу принимают.

Основной принцип проверки статистических гипотез можно сформули­ровать так: если наблюдаемое значение критерия принадлежит критичес­кой области — гипотезу отвергают, если наблюдаемое значение критерия принадлежит области принятия гипотезы — гипотезу принимают.

Поскольку критерий К — одномерная случайная величина, все ее возможные значения принадлежат некоторому интервалу. Поэтому критическая область и область принятия гипотезы также являются интервалами, и, следовательно, существуют точки, которые их разделяют.

К кр

Различают, одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.

К>К кр

К<К кр

Односторонней называют правостороннюю или левостороннюю крити­ческую областью.

Двусторонней называют критическую область, определяемую неравенствами K<K1, K>K2, где К2>К1.

1.6. Критерий Ст ьюдента

t-критерий Стьюдента применяется, когда необходимо сделать статистический вывод, равно ли математическое ожидание M{ Х} генеральной совокупности некоторому предполагаемому значению С или ког­да требуется построить доверительный интервал для M{Х} . Обнаруже­но, что случайная величина t (при независимых наблюдениях) распреде­лена по закону Стьюдента, если Х распределена нормально:

 критерий ст ьюдента 1

где N- общее число наблюдений (объем выборки),

Х — среднее арифметическое случайной переменной Х;

S{Х), S{X}- среднеквадратическое отклонение соответственно единичных значений Х и среднего арифметического Х.

На рис.1.2 показаны кривые дифференциального закона распределе­ния Ф( t ) для различных степеней свободы f=N-1 , по которым вычисляют несмещенную оценку дисперсии S2 { Х } . При сравнитель­но небольших N кривая Ф( t ) более пологая, чем нормальный закон распределения Ф(Х). При N—— кривая Ф( t ) приближается к кривой нормированного нормального распределения. Из рис.1.2 видно, что t-распределение симметрично относительно t=0, поэтому в таблицах, где даны критические значения tкр = t q,f для принятого уровня значимости q и имеющегося чис­ла степеней свободы f , задаются только положительные t кр .

Если при расчете t по формуле (1.3) при подстановке в нее вместо М{X} предполагаемого значения С окажется, что t< t кр , то можно сделать вывод о том, что гипотеза М{X} = С не проти­воречит результатам наблюдения при принятой уровне значимости q .

 критерий ст ьюдента 2

В противном случае эта гипотеза отвергается с тем же уровнем значимости q . При этом остается возможность совер­шить ошибку первого рода, т.е. отвергнуть верную гипотезу с вероят­ностью q . —

Рассмотрим использование t-критерия Стьюдента для построения доверительного интервала для математического ожидания.

При t=t кр разность [X — M{Х}] в (1.3) равна половине шири­ны доверительного интервала __ т.е.

 критерий ст ьюдента 3

Доверительный интервал, в котором с доверительной вероятностью P = I q находится математическое ожидание M{X} , определяется следующими выражениями:

 критерий ст ьюдента 4

Поскольку мате­матическое ожидание М{X} есть истинное, объективно существующее неслучайное значение, а границы интервала — случайные величины (за счет наличия в них случайных величин X и S{X}), то правильно будет говорить о том, что доверительный интервал (1.5), (1.6) с ве­роятностью Р = I — q накрывает М { X }.

1.7. Критерий Фишера

Критерий Фишера применяется при проверке гипотезы о равенстве дисперсий двух генеральных совокупностей, распределенных по нормальному закону.

F-критерий Фишера называют дисперсионным отношением, так как он формируется как отношение двух сравниваемых несмещенных оценок дисперсий:

причем в числителе ставится большая из двух дисперсий. Расчетное F сравнивают с _____________, которое находятиз таблиц, для степеней свободы _____________________________________где N 1 — число элементов выборки, по который вычислена _______ .

2

Если F < F кр , то принимается нулевая гипотеза о равенстве генеральных дисперсий _________________ при принятом уровне значимости q .

На рис. 1.3 показаны кривые распределения _____. Зачернена об­ласть критических значений F .

На практике задача сравнения дисперсий возникает, если требуется сравнить .точность приборов, инструментовили методов измерений. Предпочтительнее тот прибор, инструмент или метод, который обеспечи­вает наименьшее рассеяние результатов измерений, т.е. наименьшую дис­персию.

Кривые F- распределения Фишера

 критерий фишера 1

Рис.1.3

Если окажется, что нулевая гипотеза справедлива, т.е. генераль­ные дисперсии одинаковы, то различие несмещенных оценок дисперсий незначимо и объясняется случайнымипричинами , в частности случайным отбором объектов выборки. Например, если различие несмещенных оценок дисперсий результатов измерений, выполненных двумя приборами, оказа­лось незначимым, то приборы имеют одинаковую точность.

Если нулевая гипотеза будет отвергнута, т.е. генеральные диспер­сии неодинаковы, то различие несмещенных оценок дисперсий значимо и не может быть объяснено случайными причинами, а является следствием того, что сами генеральные дисперсии различны. Например, если разли­чие _________________ результатов измерений, произведенных двумя приборами, оказалась значимым, то точность приборов различна.

1.8. Критерий Кохрэна

G -критерий Kохрэна применяется для оценки однородности несмещенных оценок дисперсий, вычисленных по одинаковому чис­лу N наблюдений. При этом генеральные совокупности должны быть распределены нормально. Критерий формируется как отношение максимальной из сравниваемых оценок дисперсий к сумме всех K дисперсий;

 критерий кохрэна 1

кр

 критерий кохрэна 2

Если требуется оценить генеральную дисперсию, то при условии од­нородности оценок дисперсий целесообразно принять в качестве ее оцен­ки среднее арифметическое несмещенных оценок дисперсий

 критерий кохрэна 3

1.9. Критерий Пирсона

 критерий пирсона 1

Нормальный закон распределения характеризуется плотностью вероят­ности вида

где M { X }, ____ — соответственно математическое ожидание и диспер­сия случайной величины. согласованности изучаемого распределения с нормальным

X 2

Использование критерия Пирсона основано на сравнении эмпиричес­ких (наблюдаемых) ___ и теоретических (вычисленных в предположении нормального распределения) _____ частот. Обычно ____ и _____ различны.

Возможно, что расхождение случайно (незначимо) и объясняется малым числом наблюдений, способом их группировки Или другими причина­ми. Возможно, что расхождение частот неслучайно (значимо) и объясня­ется тем, что теоретические частоты вычислены, исходя из неверной ги­потезы о нормальном распределении генеральной совокупности.

Критерий Пирсона отвечает на поставленный ранее вопрос. Однако, как и любой статистический критерий, он не доказывает справедливость гипотезы, а лишь устанавливает при принятом уровне значимости q ее согласие или несогласие с данными наблюдений.

Пусть по выборке объема ___ получено эмпирическое распределение.

Допустим, в предположении нормального распределения генеральной совокупности, вычислены теоретические частоты _____. При уровне значимости q требуется проверить нулевую гипотезу: генеральная совокупность распределена нормально.

В качестве критерия проверки нулевой гипотезы принимается слу­чайная величина •

 критерий пирсона 2 или

 критерий пирсона 3

где К- число интервалов (вариант).

Эта величина случайная, так как в различая опытах она принимает различные, заранее неизвестные значения. Чем меньше различаются эмпирические и теоретические частоты, тем меньше значение критерия (1.9) и, следовательно, он в известной мере характеризует близость эмпири­ческого и теоретического распределений. Возведением в квадрат разнос­тей частот устраняется возможность взаимного погашения положительных и отрицательных разностей.

При неограниченном возрастании объема выборки ( _________ ) закон распределения случайной величины (1.9), независимо от того, какому за­кону распределения подчинена генеральная совокупность, стремится к за­кону распределения X 2 с f степенями свободы. Поэтому случайная ве­личина (1.9) обозначена X 2 , а сам критерий называют критерием сог­ласия «хи квадрат».

Число степеней свободы находят по равенству f = K -1- l где l число параметров предполагаемого распределения, которые оце­нены по данным выборки, а l вызвана тем, что имеется дополнитель­ное ограничение:

 критерий пирсона 4

т.е.- Теоретическое число элементов совокупности должно быть равно фак­тическому числу элементов.

Поскольку в данном случае, предполагаемое распределение является нормальным, nо оценивают два параметра (математическое ожидание и среднеквадратическое отклонение), поэтому l=2 , и число степеней свободы

 критерий пирсона 5

Еслирасчетное (наблюдаемое)значение критерия (1.9).оказалось меньше критического _____ которое находят по таблицам, для соответствующего уровня значимости q и числа степеней свободы , т.е. если

 критерий пирсона 6

то нет оснований отвергнуть нулевую гипотезу о нормальности распреде­ления. В противном случае (при ___________ ) нулевая гипотеза отверга­ется.

При проверке гипотезы о нормальности распределения существует правило, согласно которому общее количество элементов выборки должно быть

 критерий пирсона 7

а число элементов, попавших в любой i-и интервал (т.е. значения эмпи­рических частот ____ ),должно быть ___________________________

Если в крайние интервалы попадает меньшее число элементов, то они объединяются ссоседними интервалами. Внутренние интервалы объеди­нять запрещается. Общее число интервалов К , оставшихся после объеди­нения, должно удовлетворять условию _____________ (1.15)

Иначе число степеней, свободы f (1.11) окажется равным нулю, и гипо­тезу невозможно будет проверить.

В целях контроля вычислений формулу (1.9) целесообразно преобра­зовать к виду

 критерий пирсона 8

____

Если ­­­­_________ , то нет оснований отвергнуть нулевую гипоте­зу. Т.е., расхождение эмпирических и теоретических частот незначимо. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

MicrosoftOffice является единственным пакетом, установленным на большинстве компьютеров. Excel — это организатор любого типа данных, будь они числовыми, текстовыми или какими-нибудь еще. Поскольку в этой программе есть много встроенных вычислительных возможностей, большинство людей обращаются к Excel, когда нужно создать таблицы для финансовых расчетов, работать со статистическими данными. С помощью программы можно сделать свои отчеты (например, созданные в Word) более профессиональными и «пробить» дополнительное финансирование с помощью потрясающих деловых презентаций (вроде тех, что создаются в MicrosoftPowerPoint).

Excel позволяет создавать диаграммы или таблицы для различных финансовых расчетов, хра­нить какие-либо списки или даже сводить данные из различных таблиц.

базами данных)

Каждая единица информации (например, имя, адрес, число продаж в ме­сяц и др. информация) занимает свою собственную ячей­ку (клетку) в создаваемой рабочей таблице. В каждой рабочей таблице 256 столбцов (из которых в новой рабочей таблице на экране видны, как правило, только первые 10 или 11 (от А до J или К) и 65 536 строк (из которых обычно видны только первые 15-20).

Если умножить 256 на 65 536, то получится, что в каждой рабочей таблице 16 777 216 пустых клеток. Каждая новая рабочая книга содержит три чистых листа рабочих таблиц.

Вся помещаемая в электронную таблицу информация хранится в от­дельных клетках рабочей таблицы. Но ввести информацию можно только в текущую клетку. С помощью адреса в строке формул и табличного курсора Excel ука­зывает, какая из 16 миллионов клеток рабочей таблицы является те­кущей. В основе системы адресации клеток рабочей таблицы — так называемой системы А1 — лежит комбинация буквы (или букв) столбца и номера строки.

Excel являет­ся таким замечательным инструментом для выполнения расчетов по формулам, а также для хранения информации в виде списков и таблиц. Это дает возможность намного упростить работу со статистическими данными, которые рассчитываются по сложным формулам. В программе заложены множество групп формул, в том числе и статистических, или пользователь может сам записать формулу.

 критерий пирсона 9

 критерий пирсона 10