Структуры типовых регуляторов

Каждый контур регулирования обобщенно можно рассматривать как систему, состоящую непосредственно из самого объекта регулирования и регулятора, который через исполнительное устройство может влиять на регулируемый параметр объекта.

Каждый регулятор можно охарактеризовать:

  • законом, на основе которого осуществляется регулирование;
  • типами входных сигналов (первичных датчиков);
  • типами выходных сигналов управления (исполнительных устройств);
  • способом задания установки регулирования;
  • дополнительными возможностями (дополнительные функции, дополнительные входы/выходы).

По закону регулирования они делятся на двух- и трехпозиционные регуляторы, типовые регуляторы (интегральные, пропорциональные, пропорционально-дифференциальные, пропорционально-интегральные и пропорционально-интегрально-дифференциальные регуляторы — сокращенно И, П, ПД, ПИ и ПИД-регуляторы), регуляторы с переменной структурой, адаптивные (самонастраивающиеся) и оптимальные регуляторы.

Рассмотрим структурные схемы автоматических регуляторов с типовыми сервоприводами, воспроизводящие основные законы регулирования методом параллельной и последовательной коррекции.

Структуры типовых регуляторов

1. П -регулятор

Функциональная схема П-регулятора с сервоприводом с пропорциональной или интегральной скоростью перемещения изображена на рис. 1.

Структуры типовых регуляторов 1

Рис. 1. Структурная схема регулятора, состоящего из усилителя, сервопривода и отрицательной обратной связью

Отрицательная обратная связь в регуляторе осуществляется по положению регулирующего органа путем подачи на вход устройства обратной связи сигнала с выхода сервопривода. Конструктивно обратная связь осуществляется с помощью механической, электрической или другой передачи в зависимости от типов сервопривода и командно-усилительного устройства. Характеристики П-регуляторов (операторная и частотная) имеют вид:

W р (р) = 1 ⁄ Wо.с (р); Wр (iщ) = 1 ⁄ Wо.с (iщ) (1.1)

Для того, чтобы приведенное выше выражение было тождественно уравнению пропорционального регулятора x р = Kр y*, необходимо выполнить условие:

8 стр., 3984 слов

Система автоматического регулирования

... регулятора с реальным объектом регулирования. Окончательный выбор параметров регулятора и его настройка выполняют в натурных условиях при опытной отработке системы регулирования. Развитие теории автоматического регулирования ... определяет закон изменения регулируемой величины. Реализация желаемого закона осуществляется в результате формирования управляющих переменных, которые воздействуют на ...

W о.с (р) = Xо.с (р) ⁄ xр (р) = 1 ⁄ Kр (1.2)

В соответствии с этим условием обратная связь должна выполняться на базе безинерционного усилительного звена. Коэффициент усиления звена обратной связи k о.с = д = 1 ⁄ Kр называют степенью жесткой (т. е. неизменной во времени) обратной связи.

П-регуляторы имеют орган настройки для изменения д (K р ), который служит параметром его настройки. Переходная характеристика реального П-регулятора (рис. 2) несколько отличается от идеального в начальной своей части из-за ограниченной скорости сервопривода.

Структуры типовых регуляторов 2

Рис. 2. Кривая переходного процесса П-регулятора

2. ПД -регулятор

Функциональная схема ПД-регулятора представлена на рис. 3, а. Дифференцирующая составляющая формируется специальным прибором — дифференциатором, обладающим характеристикой реального дифференцирующего звена. На его выходе формируется сигнал, пропорциональный скорости изменения регулируемой величины.

Структуры типовых регуляторов 3

Рис. 3. ПД-регулятор: а — структурная схема; б — кривая переходного процесса

Скоростной сигнал суммируется с сигналом по отклонению регулируемой величины. Результирующий сигнал поступает на вход усилителя. Усилитель и сервопривод охватываются жесткой отрицательной обратной связью. В замкнутом контуре усилитель— привод — обратная связьформируется П-закон регулирования с коэффициентом усиления K р . Динамическая характеристика реального ПД-регулятора имеет вид

Структуры типовых регуляторов 4 Структуры типовых регуляторов 5

Переходная (временная) характеристика ПД-регулятора с сервоприводом с ограниченной скоростью изображена на рис. 3, б и представляет собой сумму временных характеристик пропорционального и реального дифференцирующего звеньев. Параметром настройки собственно регулятора служит K р (степень обратной связи д); параметрами настройки дифференциатора служат коэффициент усиления Кд и постоянная дифференцирования Тд , произведение которых характеризует степень ввода дифференциальной составляющей в ПД-закон регулирования.

3. ПИ- регулятор

Реальные ПИ-регуляторы тепловых процессов имеют два вида функциональных схем (рис. 4).

В первом варианте (рис. 4, а) сервопривод охватывается отрицательной обратной связью (ООС) и его характеристика не влияет на формирование закона регулирования, целиком определяемого характеристикой устройства обратной связи. Во втором варианте (рис. 4, б) сервопривод не охватывается обратной связью, и ПИ-закон регулирования формируется охватом обратной связью только усилителя К у . При этом динамические характеристики регулятора в целом определяются динамическими свойствами цепи, состоящей из последовательно включенных замкнутого контура (Ky —Wo . c ) и сервопривода. Оба варианта структурных схем ПИ-регуляторов используются в их промышленных исполнениях.

10 стр., 4767 слов

Типы регулярных регуляторов (2)

... частности один из её разделов – автоматические системы регулирования. Простейшие автоматические регуляторы и устройства человек стал применять ещё в древнейшие времена. Так на ... элементы, из которых формируется автоматическая система регулирования, рассмотрены ниже.) Интегрирующее звено. Выходная величина интегрирующего звена пропорциональна интегралу входной величины, т. е. [pic] (1) ...

 пи регулятор 1

Рис. 4. Структурные схемы ПИ-регуляторов:

  • а — сервопривод охваченООС;б сервопривод не охвачен ООС

В первом варианте устройство обратной связи должно иметь динамическую характеристику реального дифференцирующего звена

 пи регулятор 2

В этом случае регулятор в целом независимо от типа сервопривода воспроизводит динамику ПИ-регулятора

 пи регулятор 3  пи регулятор 4

Если принять Т ди и Kр =1/Kд , получим

 пи регулятор 5

 пи регулятор 6 т.е. передаточную функцию ПИ-регулятора, описываемого также дифференциальными уравнениями

 пи регулятор 7  пи регулятор 8 и

В промышленных ПИ-регуляторах в качестве обратных связей используют различные устройства: электрические, пневматические и гидравлические. Но все они служат аналогами реального дифференцирующего звена, имеют соответствующие ему динамические характеристики, и называются устройствами гибкой или упругой (изменяющейся во времени) обратной связи.

При втором варианте исполнения ПИ-регулятора (рис. 4, б) возможны два случая: 1) сервопривод имеет характеристику интегрального звена (например, электрический или гидравлический сервопривод с переменной скоростью); 2) сервопривод обладает характеристикой пропорционального звена (мембранный сервопривод с уравновешивающей пружиной).

В обоих случаях в соответствии с правилом определения результирующей характеристики двух последовательно включенных звеньев

W p (p) = WКУУ (p)Wс.п (p), (3.3), гдеWКУУ (p) = 1 ⁄ Wо.с (р).

При использовании сервопривода с передаточной функцией интегрального звена W с.п (p) = 1⁄ TР передаточная функция регулятора имеет вид

 пи регулятор 9  пи регулятор 10

При этом для формирования ПИ-закона с помощью устройства обратной связи необходимо, чтобы выдерживалось соотношение

1/W о.с (р) = WКУУ (р) = Kр (1+TР ) (3.5)

что обеспечивает обратная связь с оператором

W о.с (р) = Kо.с /(1+TР ) = д/(1+TР ) (3.6)

12 стр., 5964 слов

Типы регулярных регуляторов (3)

... исследования и настройки. Эти вопросы изучает наука об автоматических системах управления, в частности один из её разделов – автоматические системы регулирования. Простейшие автоматические регуляторы и устройства ... скорости изменения выходной величины при единичном значении входной величины. Преобразовав дифференциальное уравнение звена по Лапласу, получим px ВЫХ ( p ) = kx ВХ ( p ) , откуда ...

 пи регулятор 11

Рис. 5. Переходный процесс в устройстве Рис. 6. Переходный процесс ПИ-регулятора обратной связи

Последнее уравнение служит оператором инерционного звена первого порядка. При охвате К у такой обратной связью оператор регулятора в целом имеет вид

W р (р) = Kр (1+1/TиР )

Параметрами настройки ПИ-регулятора служат K р и Ти .

Если сервопривод имеет характеристику пропорционального звена и не охватывается обратной связью (рис. 4, б), то для того, чтобы выполнялось условие (3.2), W о. c (p) должно быть реальным дифференцирующим звеном.

Постоянная времени ПИ-регулятора Т и численно равна подкасательной Тд к переходной кривой реального дифференцирующего звена (рис. 5).

Промышленные регуляторы имеют специальные приспособления— органы настройки для изменения K р (д) и Ти в достаточно широких, но ограниченных пределах. Так как подача на вход регулятора ступенчатого сигнала не составляет труда, фактически установленные значения Кр и Tи можно легко определить из его экспериментальной переходной кривой (рис. 6).

Наклонный участок OA на кривой объясняется наличием у промышленного ПИ-регулятора сервопривода с конечной (ограниченной) скоростью перемещения выходного вала редуктора. Из этого графика следует, что

K р = xр1 /y* (3.7)

а Т и численно равно времени, необходимому для перемещения выходного вала сервопривода из положения xр1 до его удвоенного значения 2хр1 . Отсюда второе название Tи — время удвоения выходного сигнала ПИ-регулятора xр при подаче на его вход ступенчатого сигнала у*.

Из уравнения динамики идеального ПИ-регулятора следует, что К ри определяет степень ввода интегральной составляющей в ПИ-закон регулирования

 пи регулятор 12

Действительно, при безграничном увеличении Т и второй член в  пи регулятор 13последнем уравнении стремится к нулю и регулятор из пропорционально-интегрального переходит в П-регулятор. При этом экспонента (вида де t / T и ) на выходе реального дифференцирующего звена, используемого в качестве устройства обратной связи, вырождается в ступенчатый сигнал д (рис. 5).

4. ПИД-регулятор

Закон регулирования

W р (р) = Kр +Kр /TиР +Kд TдР (4.1)

в реальных регуляторах формируется путем последовательной (рис. 7, а) или параллельной (рис. 7, б) коррекций ПИ-регулятора с помощью реального дифференцирующего (РД) звена. В обоих случаях ПИД-закон воспроизводится лишь приближенно.

14 стр., 6793 слов

Автоматические регуляторы

... регулятора Автоматический регулятор (рис.10) состоит из: ЗУ -- задающего устройства, СУ - сравнивающего устройства, УПУ -- усилительно-преобразующего устройства, БН -- блока настроек. Задающее устройство должно вырабатывать высокостабильный сигнал задания (установку регулятора) ... значение , где-- точность регулирования. Настройки регулятора выбираются так, чтобы обеспечить либо минимально возможное ...

При последовательной коррекции

 пид регулятор 1  пид регулятор 2

Где

 пид регулятор 3

При параллельной коррекции

 пид регулятор 4  пид регулятор 5

Где

 пид регулятор 6

 пид регулятор 7

Рис. 7. Последовательная (а) и параллельная (б) коррекция ПИ-регулятора с помощью дифференцирующего звена

 пид регулятор 8

Рис. 8. Переходные характеристики ПИД-регуляторов

ПИД-регулятор имеет четыре параметра настройки: K р , Tи , Tд и Kд , которые могут быть получены из экспериментальных кривых разгона ПИ-регулятора и РД-звена, снятых по отдельности. Комплексные параметры настройки реального ПИД-регулятора K*р и T* можно определить по формулам (4.2) (4.3).

На рис. 8. приведена кривая разгона реального ПИД-регулятора с аналоговым выходом (сплошная линия).

В отличие от идеального (прерывистая линия) она имеет ограниченный и плавно затухающий «всплеск» x* р , связанный с дифференцированием ступенчатого сигнала с помощью РД-звена.

Заключение

Автоматические регуляторы, помимо высокой надежности, должны обладать высокой чувствительностью к изменениям входного сигнала, необходимой для точного поддержания регулируемых величин вблизи заданного значения. Для этого в составе регулятора предусматривается специальное измерительное устройство. Кроме того, автоматический регулятор должен развивать на выходе усилие, необходимое для перемещения регулирующих органов (клапанов, задвижек, шиберов), т. е. содержать в своей структуре достаточно мощный исполнительный механизм (сервопривод).

Для реализации выбранного закона регулирования и изменения параметров настройки регулятора в необходимых пределах в его состав должны входить устройства формирования закона регулирования и изменения (коррекции) параметров настройки. Необходимо также иметь возможность изменения в широких пределах заданного значения регулируемой величины, с которым сравнивается ее текущее значение. Это требование предусматривает наличие задатчика ручного или автоматического управления (ЗУ) в составе регулятора. Выполнение перечисленных требований возможно лишь при использовании автоматических регуляторов непрямого действия.

Список литературы

[Электронный ресурс]//URL: https://drprom.ru/referat/pid-regulyator/

8 стр., 3545 слов

Анализ пневматического пропорционально-интегрального регулятора давления

... 100 мин, предел пропорциональности от 5 до 3000%. Параметры настройки пневматического ПИ-регулятора взаимосвязаны, то есть изменения коэффициента усиления влияет на время интегрирования. Время интегрирования ... быть простыми в эксплуатации. К ТСА относятся все элементы автоматических регуляторов, осуществляющих процесс регулирования, или управления, однако, в общее понятие ТСА включается более ...

Плетнев Г.П. Автоматическое управление и защита теплоэнергетических установок электростанций: Учебник для техникумов. – 3-е изд., перераб. – М.: Энергоатомиздат, 1986.

Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. Изд-во «Наука», 1966.

Михайлов В.С. Теория управления. – К.: высш. шк. Головное изд-во,1988.

Зайцев Г.Ф. Теория автоматического управления и регулирования. – 2-е изд., перераб. И доп. – К.: высш. шк. Головное изд-во, 1989.