Технология получения строительных материалов из полимерных отходов

Технология производства строительных материалов из полимер песчаной композиции., Подготовка сырья (отходов полимеров и песка).

полимер песчаной черепицы

Конечно, существуют эффективные технологии их переработки, позволяющие использовать полимеры повторно. Как правило, требуется тщательная сортировка отходов пластмасс, их отмывка, сушка. Это дорогие и трудоёмкие процессы. Да и качество переработанного сырья низкое, и не позволяет использовать его на 100% взамен исходного.

полимерно-песчаной черепицы

НЕ подходят тугоплавкие полимеры (поликарбонаты, фторопласты) и резины. Легкоплавкие, типа ПВХ, могут частично выгорать, но на качество полимер песчаной черепицы это не влияет. Также выгорают примеси (бумага, пищевые отходы), испаряется влага.

производстве черепицы

Предварительная переработка сырья.

На первом этапе отобранные и отсортированные пластики измельчаются на дробилке полимеров. Жесткий и мягкий пластик дробятся отдельно, после этого смешиваются в пропорции 60/40.

Например: полиэтилены лучше ведут себя при отрицательных температурах и глянец на изделии получить проще, зато «твёрдые» полимеры добавят жёсткости и прочности при нагреве на солнце. Получается геометрически ровная и правильная черепица.

Полимер песчаная черепица, Подготовка полимер песчаной массы.

После первого измельчения отходы пластиков попадают в экструзионную машину, где под нагревом перемешиваются. Любой химик скажет, что это невозможно и ненаучно — перемешать разнородные полимеры; всё равно, что смешивать керосин с водой. Но такая задача и не ставиться – перемешивать полимеры на молекулярном уровне, достаточно перемешать отходы пластиков, используя свойства вязкости расплавленных полимеров.

В структуре полимерных отходов большое место занимают плёнки полиэтилена и полипропилена. Они без измельчения добавляются в экструзионную машину.

Полученную полимер песчанную массу с консистенцией дрожжевого теста оператор рукавицей снимает на выходе из экструзионного узла линии, и, сваляв руками шар (агломерат до 100 мм.), бросает в воду для охлаждения. Вынутый из воды, не совсем остывший, но уже затвердевший агломерат быстро остывает.

Случается, что происходит перегрев полимерной массы, и она вытекает из экструзионки на пол, пока оператор не выключит нагрев. Остывшая такая масса, затем пригодна для использования. Весь остывший агломерат подвергается повторному измельчению в щепу с размером фракции до 1-10 мм. Таким образом, получается готовое сырьё для полимерно-песчаной смеси.

10 стр., 4957 слов

Способы смешения полимеров

... следующие задачи: ознакомление с термодинамикой смешения полимеров; изучение способов смешения полимеров, механических свойств смесей, а также ... смешении физико-химических процессов, например, набухания полимера в пластификаторе. Процесс смешения включает несколько этапов: измельчение твердых компонентов; введение компонентов в каучук; диспергирование агломератов; смешение. Механизм смешения ...

Получение полимер песчаной массы и формовка черепицы, тротуарной плитки, бордюрного камня, урны, колодезного люка и др.

Этот этап производства плитки завершающий. Некоторые отделяют его от заготовительного участка, располагают в отдельном помещении. Кроме эстетических соображений (заготовка полимерной усреднённой смеси сопровождается выделением газов, и требует обеспечения вытяжки), имеются ещё и практические выгоды: проще осуществлять контроль и учёт. А в случаях работы в исправительных учреждениях, просто необходим из-за режимности предприятия.

Смешивание песка, полимеров и красителей происходит в термошнекосмесительном агрегате (Агрегат Плавильно Нагревательный).

Важно поддерживать массу смеси в АПН постоянной, добавляя по мере расхода готовой массы новые порции. Измельчённая полимер песчаная масса смешивается с песком и красителями в разных пропорциях в зависимости от выпускаемой продукции. Для, например, черепицы это соотношение: 24/75/1, а для тротуарной плитки может быть 15/84/1.

Важно получить качественную смесь – частицы песка должны полностью обволакиваться полимерами, без пробелов. Это достигается уникальной конструкцией вала, рассчитанной опытным путем. Точнее не рассчитанной, а вымученной опытными конструкциями и научными исследованиями. В результате лопасти на валу расположены так, что при вращении вала скорость продвижения массы разная в 3х зонах нагрева, что обеспечивает полный расплав полимера и качественное смешивание с наполнителем.

полимер песчаная масса

Форма, установленная на прессе с подвижной нижней плитой, охлаждается по-разному.

формования черепицы

полимерно песчаной черепицы

полимерно-песчаной черепицы

Материалы из пластмассовых отходов

Наиболее многотоннажными полимерными материалами являются полиолефины — высокомолекулярные соединения на основе непредельных углеводородов. Основной представитель этой группы — полиэтилен низкого и высокого давления. Практическое значение имеют также полипропилен и полиизобутилен.

Перспективным способом утилизации отходов полиолефинов, как и других термопластов, является их повторная переработка. Отходы предварительно сортируют и очищают от инородных включений, а затем подвергают измельчению, агломерации и грануляции. Из гранулята получают различные изделия, в том числе и строительного назначения. Вторичное сырье целесообразно вводить в полимерные композиции в количестве до 40—50% первичного вместе с пластификаторами, наполнителями и стабилизаторами.

Для получения высококачественных полимерных материалов из вторичных полиолефинов эффективна их модификация — экранирование функциональных групп и активных центров химическими или физико-химическими способами (например, введением различных добавок, обработкой кремнийорганическими жидкостями и др.).

Упаковочная и бутылочная полимерная тара может быть переработана в отделочные плитки и другие изделия. Полимерной основой указанных видов отходов являются полиэтилен и полиэтилентереф-талат. Оба полимера относят к термопластам с температурой плавления соответственно 130 и 265 °С. Это создает возможность изготовления изделий из композиций на основе данных отходов методом горячего прессования. Полимерные отходы подвергают сначала грубому, а затем тонкому измельчению, смешивают с наполнителями и прессуют.

В большинстве асфальтовых дорожных покрытий основным связующим компонентом являются битумы. Обладая рядом ценных свойств и имея сравнительно невысокую стоимость, битумы, в состав которых входят полярные соединения, отличаются недостаточной стойкостью. Их прочностные показатели также сравнительно невысоки. Все это в значительной степени ухудшает свойства асфальтовых покрытий и сокращает сроки их эксплуатации.

Использование отходов полиолефинов в композиции с битумом является одним из направлений, позволяющих модифицировать свойства покрытий.

Композиции, как правило, получают, смешивая битум с отходами полиолефинов при температурах 80—100 °С и выгружая образующуюся смесь в специальные формы, в которых происходит охлаждение при комнатной температуре. При добавлении отходов полиолефинов наблюдается значительное возрастание прочностных показателей композиций и снижение деформаций. Особенно заметно это влияние при температурах испытаний 20 и 40 °С, соответствующих температурам эксплуатации дорожных покрытий в летнее время. При О °С эффект от использования полиолефиновых отходов становится менее заметным.

Оптимальное количество полиолефиновых отходов для битумно-полимерных покрытий составляет 7—12%. Атактический полипропилен в силу своей хрупкости при О °С и высокой склонности к окислению может быть рекомендован для применения в дорожных покрытиях только в определенных климатических зонах и при соответствующей дополнительной стабилизации.

Отходы полистирольных пластиков, введенные в битумные композиции в небольших количествах, также оказывают положительное влияние на свойства композиций. Если сравнить свойства таких композиций со свойствами стандартных битумно-минеральных смесей, то нетрудно заметить, что добавка полистирольных отходов приводит к существенному увеличению прочностных показателей при температурах испытания 0, 20 и 50 °С, термостабильности и водостойкости.

Из вторичного полиэтиленового и полистирольного сырья в смеси с песком можно получать пресс-композиции с заданными свойствами. Высокие прочностные показатели таких материалов в сочетании с хорошей водостойкостью позволяют, например, в Японии использовать плиты из них для выстилки морского дна с целью создания станций по разведению рыбы.

Один из методов получения строительных плит состоит в прессовании смеси пластмассовых отходов и песка, взятых в соотноше «ш 1:1. Песок просеивают, нагревают до 500 °С, добавляют к смеси отходы полиэтилена и полистирола, смешивают при 150 °С в течение 25 мин, затем полученную массу прессуют.

Такие материалы обладают высокими прочностными показателями в сочетании с хорошей водостойкостью.

По аналогичной технологии получают материалы из пластмассовых отходов в смеси с мелом, стекловолокном, асбестом и другими минеральными наполнителями. Все компоненты в течение 2 ч подсушивают при 120 °С, затем их пластифицируют в смесителе при 250— 300 °С в течение 15 мин, выгружают при 180 °С в форму и прессуют. Полученные композиции обладают хорошими прочностными показателями и высокой стойкостью к истиранию, что позволяет использовать их при изготовлении плит для полов. Для улучшения внешнего вида изделий при смешивании добавляют такие пигменты, как оксиды железа и хрома, желтый крон, диоксид титана.

Наряду с прессованием строительные материалы получают расплавлением термопластичных полимеров с цементом, разливкой в формы и охлаждением. Эти изделия обладают высокой прочностью и стойкостью против горения.

Высокая водостойкость большинства полимерных отходов, в первую очередь полиолефиновых, позволяет широко использовать их в различных материалах, применяемых для герметизации швов между панелями зданий, а также для покрытия частей сооружений, работающих под водой или в условиях повышенной влажности.

Композицию с использованием побочного продукта синтеза полипропилена — атактического полипропилена — в количестве 60—95% совместно с 40—50% термической сажи применяют при получении герметизирующих лент путем экструзии. Хорошая водостойкость атактического полипропилена позволяет также использовать его в композициях, на основе которых получают кровельный рубероид.

На предприятиях по изготовлению пенополистирольных изделий образуются отходы, в основном, представляющие обрезки , не возвращаемые повторно в основной технологический процесс. Обрезки пенопласта пропускают через молотковую дробилку и получают заполнитель фракций 0—5 и 5—10 мм. На таком заполнителе изготавливают конструкционно-теплоизоляционные полистиролбетоны плотностью 600—800 кг/м3, прочностью 2,5—5 МПа и теплоизоляционные бетоны плотностью 350—500 кг/м3 и прочностью 0,9—1,5 МПа. Для получения теплоизоляционного полистиролбетона в бетонную смесь следует вводить до 0,2% от массы цемента воздухововлекающей добавки.

Из теплоизоляционного бетона на дробленом пенопласте изготавливают плиты утеплителя. Его также можно использовать в качестве монолитной теплоизоляции в покрытии, для среднего слоя трехслойных стеновых панелей, полов, а также для замоноличивания стыков между конструкциями.

Полистиролбетон средней плотностью до 700 кг/м3 относится к трудносгораемым материалам, а более тяжелый к несгораемым.

Разработаны методы получения строительных изделий, в которых отходы полимеров вводят на стадии полимеризации другого мономера. Так, отходы ударопрочного полистирола растворяют в соотношении 1:1,5 и разливают в формы. Полимеризация осуществляется при 20 °С в присутствии добавки перекиси бензоила. Получаемый материал имеет предел прочности при растяжении 31—36 МПа, ударную вязкость 21—27 кДж/м2, теплостойкость по Мартенсу 42 °С и водопог-лощение за 24 ч — 0,07%.

Все шире внедряются композиции на основе двух групп отходов: по-листирольных пластиков и отходов деревообрабатывающей промышленности. Такие композиции, содержащие до 40% полистирольных отходов, по физико-механическим показателям превосходят традиционные материалы, в которых связующим являются синтетические смолы.