Влияние потребителей на качество электроэнергии

Влияние потребителей на качество электроэнергии

Качество электроэнергии (КЭ) — это совокупность ее свойств, определяющих воздействие на электрооборудование, приборы и аппараты и оцениваемых показателями качества электроэнергии (ПКЭ), численно характеризующими уровни электромагнитных помех (ЭМП) в системе электроснабжения (СЭС) по частоте, действующему значению напряжения, форме его кривой, симметрии и импульсам напряжения.

В контексте современных методов и средств обеспечения КЭ электроэнергию следует рассматривать, с одной стороны, как товар, с другой — как физическое понятие:

  • электроэнергия как товар должна соответствовать определенному качеству, требованиям рынка и отличается от других видов энергии особыми потребительскими свойствами: совпадением во времени процессов производства, транспортировки и потребления;
  • зависимостью характеристик КЭ от процессов ее потребления;
  • невозможностью хранения и возврата некачественной электроэнергии;
  • электроэнергия как физическое понятие — это способность электромагнитного поля совершать работу под действием приложенного напряжения в технологическом процессе ее производства, передачи, распределения и потребления.

Товарные отношения регулируются законами рынка и юридическими нормами, требования которых отражают уровень социального и экономического развития общества. Технологический процесс регулируется физическими законами, в данном случае законами электротехники.

Юридические нормы и требования определяют права, обязанности и ответственность участников рынка электроэнергии в части обеспечения КЭ.

Электрическая энергия как товар используется во всех сферах жизнедеятельности человека, обладает совокупностью специфических свойств и непосредственно участвует при создании других видов продукции, влияя на их качество.

Понятие качество электроэнергии (КЭ) отличается от понятия качества других видов продукции. Каждый электроприемник (ЭП) предназначен для работы при определенных параметрах электрической энергии: номинальных частоте, напряжении, токе и т.п., поэтому для нормальной его работы должно быть обеспечено требуемое КЭ. Таким образом, качество электрической энергии определяется совокупностью ее характеристик, при которых ЭП могут нормально работать и выполнять заложенные в них функции. Так в табл. 1.1 приведены свойства электрической энергии, показатели качества и наиболее вероятные виновники ухудшения.

12 стр., 5689 слов

Анализ ассортимента и качества стеклянных бытовых товаров в универмаге ГУМ

... качества стеклянной посуды на основании изучения торгового предприятия ОАО «ГУМ», углубление знаний, расширение кругозора, приобретение профессиональных знаний для дальнейшей работы с товарами. Задачи работы: 1.Изучение потребительских свойств стеклянной ... является важным ассортиментным признаком и ценообразующим фактором. Бытовые изделия изготавливают ручным и свободным выдуванием, механизированным ...

Прежде всего, необходимо определить, с чем именно связана эта проблема. Возможно, что она уже давно существует или возникла после установки нового оборудования или после внесения изменений в саму систему. Поэтому измерения имеют огромное значение в оценке качества электроэнергии. Они являются основным способом выявления возникающих проблем или изменений самой системы. При проведении измерений, с другой стороны, необходимо регистрировать изменения качества электроэнергии, таким образом, проблемы связаны с возможными причинами.

К проблемам качества электроэнергии относится множество различных явлений. Каждое из этих явлений может иметь самые разные причины и разные решения, которые могут способствовать улучшению качества электроэнергии и характеристик оборудования. Тем не менее, полезно рассмотреть основные этапы изучения многих вопросов.

Таблица 1.1 Свойства электрической энергии, показатели и наиболее вероятные виновники ухудшения КЭ

Свойства электрической энергии

Показатель КЭ

Наиболее вероятные виновники ухудшения

Отклонение напряжения

Установившееся отклонение напряжения

Энергоснабжающая организация

Колебания напряжения

Размах изменения напряжения Доза фликера

Потребитель с переменной нагрузкой

Несинусоидальность напряжения

Коэффициент искажения синусоидальности кривой напряжения

Коэффициент n-й гармонической составляющей напряжения

Потребитель с нелинейной нагрузкой

Несимметрия трехфазной системы напряжений

Коэффициент несимметрии напряжений по обратной последовательности

Коэффициент несимметрии напряжений по нулевой последовательности

Потребитель с несимметричной нагрузкой

Отклонение частоты

Отклонение частоты

Энергоснабжающая организация

Провал напряжения

Длительность провала напряжения

Энергоснабжающая организация

Импульс напряжения

Импульсное напряжение Uимп

Энергоснабжающая организация

Временное перенапряжение

Коэффициент временного перенапряжения

Энергоснабжающая организация

Характерные типы электроприемников

Отклонения ПКЭ от нормируемых значений ухудшают условия эксплуатации электрооборудования энергоснабжающих организаций и потребителей электроэнергии, могут привести к значительным убыткам как в промышленности, так и в бытовом секторе, обуславливают, как уже отмечалось, технологический и электромагнитный ущербы.

От электрических сетей систем электроснабжения общего назначения питаются ЭП различного назначения, рассмотрим промышленные и бытовые ЭП.

электродвигатели

Электродвигатели

асинхронных и синхронных электродвигателей

асинхронных двигателей

Синхронные двигатели

электрического освещения

Электросварочные установки, Вентильные преобразователи, Электросварочные установки, Электротермические установки

пассивные потребители активной мощности

Воздействие каждого отдельно взятого бытового ЭП незначительно, совокупность же ЭП, подключаемых к шинам 0,4 кВ трансформаторной подстанции, оказывает существенное влияние на питающую сеть.

В связи с ростом цен на электроэнергию в настоящее время большое внимание уделяется электроснабжению коммунально-бытовых электроприемников. Особенностью электроснабжения этих потребителей является увеличение количества и потребляемой мощности ранее не применявшихся электрических приемников, таких как: ванны джакузи, бассейны с подогревом воды, нагревательные и охлаждающие устройства и т. д. Поэтому актуальным является рассмотрение влияния работы бытовых электроприборов на качество электроэнергии.

электромагнитной совместимостью

  • функциональных нарушений, связанных с отказами, сокращениями срока службы и выходом из строя оборудования, ложными срабатываниями защиты и т. п.;
  • повреждений средств защиты и безопасности людей;
  • ухудшения качества электроэнергии;
  • ухудшения электромагнитной обстановки в окружающем пространстве;
  • поражения обслуживающего персонала.

Наиболее массовым явлением является изменение амплитуды напряжения, происходящего в электросетях пользователей, включая оборудование и электропроводку внутри здания. Внутренние перенапряжения в электрических сетях возникают в результате коммутаций, как нормальных (включение и отключение линии), так и послеаварийных. Неисправности в системе питания могут быть вызваны причинами: ударами молнии, действием ветра, вмешательством животных или птиц, вмешательством человека (дорожно-транспортные происшествия, повреждение кабельных линий при рытье траншей), отказом электрооборудования. качество электроэнергия колебание напряжение

Перенапряжения могут быть связаны с повреждением, например, в результате отсоединения общего нулевого провода в сетях 380/220 В с глухозаземленной нейтралью питающего трансформатора. При этом соседние фазы оказываются под напряжением, значительно превосходящим Uфном = 220 В. При нарушении нулевого провода возникает несимметричная трехфазная система электрических нагрузок относительно источника питания, сопротивления которой зависят от величины однофазной нагрузки квартир.

Причинами пониженного напряжения может быть одновременное подключение нескольких мощных электроприборов в холодные зимние или жаркие летние месяцы.

Анализ показал, что степень влияния изменений амплитуды напряжения на различные показатели существенно отличается и зависит от вида электроприемников [2].

Бытовые электрические приемники по их назначению и влиянию на электрические сети и окружающее пространство можно разделить на следующие группы:

1. Пассивные потребители активной мощности (лампы накаливания, нагревательные элементы утюгов, плит, обогревателей);

2. Электроприемники с трехфазными асинхронными двигателями (приводы станков и механизмов — в гараже и мастерских, лифтов — в многоэтажных домах, насосов — в системе водоснабжения и отопления);

3. Электроприемники с однофазными асинхронными двигателями (приводы компрессоров холодильников, стиральных машин, кухонного комбайна, вентиляторов, кондиционеров);

4. Электроприемники с коллекторными двигателями (приводы пылесосов, электродрелей, электромиксеров, электробритв);

5. Сварочные аппараты переменного и постоянного тока для ремонтных работ в гараже, мастерских;

6. Выпрямительные устройства для зарядки аккумуляторов в гаражах и аккумуляторов радиоэлектронной аппаратуры;

7. Радиоэлектронная аппаратура (радиоприемники, телевизоры, телефонно-телеграфная связь, компьютерная техника);

8. Высокочастотные установки (печи СВЧ, жарочные шкафы);

9. Лампы разрядные.

Электроприемники этих групп могут находиться в одном коттедже (квартире), многоквартирном жилом доме и тем более в одном жилом квартале, питаемом от одной трансформаторной подстанции, нагрузкой которой являются аналогичные электроприборы магазинов, вычислительных центров, производственных объектов малых предприятий, расположенных в многоквартирных домах или рядом с ними. Воздействие каждого отдельного бытового электроприбора на работу электросети незначительно. Однако в совокупности электроприемники, подключенные к трансформаторной подстанции, оказывают на работу электрической сети существенное влияние.

В табл. приведено распределение бытовых электроприемников различных групп, подключаемых к трансформаторной подстанции (в процентах от общей нагрузки), полученное на основе анализа нагрузки городских трансформаторных подстанций.

Таблица Распределение бытовых электроприемников различных групп, питаемых от трансформаторной подстанции

Группа ЭП

1

2

3

4

5

6

7

8

9

Доля в нагрузке, %

25

16

20

5

8

5

5

8

8

Анализ показал, что группы электроприемников 2, 3, 4 (электроприемники с различными электродвигателями) характеризуются активно-индуктивной нагрузкой с частыми пусками, реверсами и отключениями, что является причиной загрузки сети реактивной мощностью и появлением колебаний напряжения, все это влияет на качество электроэнергии потребителей, особенно на работу осветительных и радиоэлектронных приборов. При работе бытовые электроприборы отрицательно воздействуют на электрическую сеть, окружающее пространство и другие электроприборы — загружают сеть реактивной мощностью, создают различные изменения напряжения, отличающиеся от номинального напряжения и пр. Следовательно, работа большинства бытовых электроприборов влияет на качество электроэнергии сети. Поэтому они должны иметь электромагнитную совместимость со смежными электрическими приемниками, включаемыми в общую электрическую сеть.

Потребители электроэнергии рассчитываются на длительную работу с номинальными электрическими параметрами режима (fн, Un, Iн и др.), при которых они обладают наивысшими технико-экономическими показателями. Однако при передаче электроэнергии от станций к потребителям качество ее ухудшается, так как в сетях имеют место потери напряжения, несимметрия нагрузки фаз вызывает несимметрию напряжений, наличие преобразовательных устройств приводит к несинусоидальности напряжений, а толчки нагрузки при отключении и подключении потребителей вызывают колебания частоты и напряжения. Указанные причины, а также ряд других факторов приводят к отклонению параметров качества электрической энергии от нормированных значений, что влияет на работу электроприемников.

Качество электроэнергии непосредственно связано с экономичностью производства, поскольку отклонения показателей качества от номинальных приводят к снижению КПД, коэффициента мощности, производительности, срока службы и других показателей потребителей электроэнергии.

Другим отражением качества электроэнергии является его влияние на сам предмет производства, на качество продукции. Действительно, отклонение показателей качества энергии от номинальных ведет непосредственно к нарушению технологических процессов (обработки, проката, гальванизации, нагрева и т. п.).

Качество электрической энергии связано и с некоторыми социальными проблемами. Так, например, недопустимые отклонения напряжения в осветительных сетях вызывают снижение освещенности, что сказывается на органах зрения человека. Появление высших гармонических в сетях электроснабжения вызывает не только нарушение работы радио- и телевизионной аппаратуры, но в определенных условиях воздействует и на здоровье людей. Высокочастотные вибрации рабочего инструмента, вызванные наличием высших гармонических, приводят к различным профессиональным заболеваниям рабочих.

Колебания напряжения, возникающие в электрических сетях при пусках мощных двигателей, при работе сварочных агрегатов, дуговых печей, вентильных установок и вследствие других причин, вызывают ощутимые последствия: в осветительных сетях — «мигание» ламп; в схемах автоматики — возникновение ложных команд; колебания влияют на пуск двигателей, на самоотключение контакторов, пускателей и др. Колебания напряжения отрицательно сказываются на зрительном восприятии людьми предметов, деталей, графических материалов, что в конечном итоге приводит к снижению производительности труда. Колебания напряжения, вызванные мощными периодическими нагрузками (прокатным станом, мощными компрессорными установками и т. п.), могут привести к колебаниям электромагнитного момента, активной и реактивной мощности генераторов ТЭЦ предприятия.

Методики количественной оценки влияния колебаний напряжения на производственные процессы, оборудование, на рабочий персонал в настоящее время не имеется.

Изменение синусоидальной формы напряжения возникает в электрических сетях, имеющих элементы, генерирующие высшие гармоники: оборудование с нелинейными насыщающимися магнитопроводами, выпрямительные установки, преобразователи частоты. Именно нелинейность нагрузки приводит к возникновению гармонических искажений напряжения сети. Практически речь идет об искажении формы и, как следствие, гармонического состава напряжения не только на зажимах потребителя, но и всей сети электроснабжения.

Выводы

1. Существенным в решении проблемы обеспечения КЭ является использование экономического механизма воздействия на участников электроснабжения и потребления в зависимости от степени их виновности в ухудшении КЭ.

2. Эффективность экономического механизма может быть обеспечена только инструментальным путем через применение специализированных средств учета электроэнергии при одновременном непрерывном контроле ее качества, направленном на определение виновника ухудшения КЭ и величины этого изменения.

Применение электрической энергии для производства иной продукции непосредственно влияет на их качество, а для населения — на комфортные условия жизни или их отсутствие. Любой электроприбор требует определенных параметров электрического тока прежде всего номинальной частоты напряжения.