Защитное заземление электроустановок

Защитное заземление электроустановок

Анализ системы заземления

заземление зануление проводник электроустановка

Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством. Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека от поражения электрическим током, если он прикоснулся к корпусу электроприбора, который из-за нарушения изоляции оказался под напряжением.

Защитное заземление — преднамеренное соединение с землей частей электроустановки. Применятся в сетях с изолированной нейтралью. В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек — ток, проходящий через человека, не будет представлять для него опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников. Существует два вида заземлителей — естественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.

В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы. Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении ток протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусственных заземлителей.

Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления, и защитная аппаратура сработает эффективнее. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления. Различают нулевой рабочий проводник и нулевой защитный проводник.

7 стр., 3375 слов

Режим работы нейтралей в электроустановках

... режим нейтрали рекомендован ПУЭ во всех электроустановках. Причина широкого распространения режима работы с изолированной нейтралью заключается в том, что в ... При выборе точек заземления нейтралей в энергосистеме руководствуются как требованиями релейной защиты в части поддержания на ... между нейтралью сети и заземлителем. II. Сети с резонансно-заземленными (компенсированными) нейтралями Если в сетях 6 ...

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.

Обозначения системы заземления

Системы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

T — непосредственное соединения нейтрали источника питания с землёй.

I — все токоведущие части изолированы от земли.

Вторая буква в обозначении системы заземления определяет характер заземления открытых проводящих частей электроустановки здания:

T — непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй.

N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания. Буквы, следующие через чёрточку за N, определяют способ устройства нулевого защитного и нулевого рабочего проводников: C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками.

Основные виды систем заземления электроустановок

1. Система заземления TN-C-S

Рис.1. Система заземления TN-C-S

В настоящее время применение системы TN-C на вновь строящихся и реконструируемых объектах не допускается. При эксплуатации системы TN-C в здании старой постройки, предназначенном для размещения компьютерной техники и телекоммуникаций, необходимо обеспечить переход от системы TN-C к системе TN-S (TN-C-S).

Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы, во вводном устройстве электроустановки (например, вводном квартирном щитке).

Во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный проводник PE и нулевой рабочий проводник N. При этом нулевой защитный проводник PE соединен со всеми открытыми токопроводящими частями электроустановки. Система TN-C-S является перспективной для нашей страны, позволяет обеспечить высокий уровень электробезопасности при относительно небольших затратах.

2. Система заземления TN-C

22 стр., 10603 слов

Проектирование электроэнергетических систем и сетей

... Расчет районной электрической сети 110кВ 4.1 Исходные данные Электрическое снабжение потребителей электрической энергией осуществляется ... системы управления энергетикой как отраслью народного хозяйства (АСУ Энергия). Оперативное управление энергосистемами осуществляется их диспетчерскими службами, устанавливающими на основании соответствующих расчетов оптимальный режим работы электростанций и сетей ...

Рис.2. Система заземления TN-C

К системе TN-C относятся трехфазные четырехпроводные (три фазных проводника и PEN- проводник, совмещающий функции нулевого рабочего и нулевого защитного проводников) и однофазные двухпроводные (фазный и нулевой рабочий проводники) сети зданий старой постройки. Эта система простая и дешевая, но она не обеспечивает необходимый уровень электробезопасности.

3. Система заземления TN-S

Рис.3. Система заземления TN-S

В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно. Все открытые проводящие части электроустановки соединены отдельным нулевым защитным проводником PE. Такая схема исключает обратные токи в проводнике РЕ, что снижает риск возникновения электромагнитных помех. Хорошим вариантом для минимизации помех является пристроенная трансформаторная подстанция (ТП), что позволяет обеспечить минимальную длину проводника от ввода кабелей электроснабжения до главного заземляющего зажима. Система TN-S при наличии пристроенной подстанции не требует повторного заземления, так как на этой подстанции имеется основной заземлитель. Такая система широко распространена в Европе.

4. Система заземления TT

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

5. Система заземления IT

В системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в будет низким и не повлияет на условия работы присоединенного оборудования. Такая система используется, как правило, в электроустановках зданий, к которым предъявляются повышенные требования по безопасности.

Рис.4. Схема контурного заземления:

1. Заземлители; 2. Заземляющие проводники;3. Заземляемое оборудование; 4. Производственное здание

Электроустановки напряжением от 110 до 750 Кв

1. В электроустановках напряжением от 110 до 750 кВ должно быть выполнено защитное заземление.

2. Заземляющие устройства следует выполнять по нормам на напряжение прикосновения или по нормам на их сопротивление. Заземляющее устройство, которое выполняют по нормам на сопротивление, должно иметь в любое время года сопротивление не более 0,5 Ом. При удельном сопротивлении «земли» , большем 500 Ом·м, допускается повышать сопротивление заземляющего устройства в зависимости от .

3. Напряжение на заземляющем устройстве при стекании с него тока замыкания на «землю» не должно превышать 10 кВ. Напряжение выше 10 кВ допускается на заземляющих устройствах, с которых исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановки. При напряжениях на заземляющем устройстве выше 5 кВ должны предусматриваться меры по защите изоляции отходящих кабелей связи и телемеханики.

4. В целях выравнивания потенциала на территории, занятой электрооборудованием, должны быть проложены продольные и поперечные горизонтальные элементы заземлителя и соединены сваркой между собой, а также с вертикальными элементами заземлителя.

6 стр., 2940 слов

Расчет электрической печи сопротивления периодического действия

... В данной курсовой работе проведем расчет муфельной электропечи для отпуска изделия. 1. Тепловой расчет Цель теплового расчета электрических печей сопротивления определение оптимальных ... конструкцию футеровки печи, определяют установленную мощность печи, вычисляют тепловые потери печи. Завершают тепловой расчет вычислением производительности печи, удельного расхода электроэнергии и теплового ...

Электроустановки напряжением выше 1000 в в сети с изолированной нейтралью

1. В электроустановках напряжением выше 1000 В в сети с изолированной нейтралью должно быть выполнено защитное заземление, при этом рекомендуется предусматривать устройства автоматического отыскания замыкания на «землю». Защиту от замыканий на «землю» рекомендуется устанавливать с действием на отключение (по всей электрически связанной сети), если это необходимо по условиям безопасности.

2. Наибольшее сопротивление заземляющего устройства R в Ом не должно быть более:

где I — расчетная сила тока заземления на землю, А.

Расчетная сила тока замыкания на землю должна быть определена для той из возможных в эксплуатации схемы сети, при которой сила токов замыкания на землю имеет наибольшее значение.

3. При удельном сопротивлении земли , большем 500 Ом·м, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от .

Электроустановки напряжением до 1000 В в сети с заземленной нейтралью

1. В стационарных электроустановках трехфазного тока в сети с заземленной нейтралью или заземленным выводом однофазного источника питания электроэнергией, а также с заземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление.

2. При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

3. В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей. В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение разъединительных приспособлений, которые одновременно с отключением нулевых рабочих проводников отключают также все проводники, находящиеся под напряжением.

4. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов (трансформаторов) или выводы однофазного источника питания электроэнергией, с учетом естественных заземлителей и повторных заземлителей нулевого провода должно быть не более 2,4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания. При удельном электрическом сопротивлении «земли» выше 100 Ом допускается увеличение указанной нормы в /100 раз. На воздушных линиях электропередачи зануление следует осуществлять нулевым рабочим проводом, проложенным на тех же опорах, что и фазные провода.

Электроустановки напряжением до 1000 В в сети с изолированной нейтралью

1. В электроустановках переменного тока в сетях с изолированной нейтралью или изолированными выводами однофазного источника питания электроэнергией защитное заземление должно быть выполнено в сочетании с контролем сопротивления изоляции.

2. Сопротивление заземляющего устройства в стационарных сетях должно быть не более 10 Ом. При удельном сопротивлении земли, большем 500 Ом, допускается вводить повышающие коэффициенты, зависящие от .

Передвижные электроустановки и ручные электрически машины класса I в сетях напряжением до 1000 в

1. Режим нейтрали и защитные меры передвижных источников питания электроэнергией, используемых для питания стационарных приемников электрической энергии, должны соответствовать режиму нейтрали и защитным мерам, принятым в сетях стационарных приемников электрической энергии.

2. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарных сетей с заземленной нейтралью или от передвижных электроустановок с заземленной нейтралью зануление следует выполнять в сочетании с защитным отключением. Допускается выполнять зануление — для ручных электрических машин класса I; зануление или зануление в сочетании с повторным заземлением — для передвижных приемников электрической энергии.

3. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарной сети или передвижного источника питания электроэнергией, имеющих изолированную нейтраль и контроль сопротивления изоляции, защитное заземление должно применяться в сочетании с металлической связью корпусов электрооборудования или защитным отключением.

4. Сопротивление заземляющего устройства в передвижных электроустановках с изолированной нейтралью при питании от передвижных источников электроэнергии определяется по значениям допустимых напряжений прикосновения при однополюсном замыкании на корпус либо устанавливается в соответствии с требованиями нормативно-технической документации.

5. Защитное заземление передвижного источника питания электроэнергией с изолированной нейтралью и постоянным контролем сопротивления изоляции допускается не выполнять:

  • если расчетное сопротивление заземляющего устройства больше сопротивления заземляющего устройства рабочего заземления прибора постоянного контроля сопротивления изоляции;
  • если передвижной источник питания электроэнергией и приемники электрической энергии расположены непосредственно на передвижном механизме, их корпуса соединены металлической связью и источник не питает другие приемники электрической энергии вне этого механизма;

— если передвижной источник питания электроэнергией предназначен для питания конкретных приемников электрической энергии, их корпуса соединены металлической связью, а их число и длина кабельной сети определяются либо величиной допустимого напряжения прикосновений при однополюсном замыкании на корпус, либо установлены нормативно-технической документацией.

6. В передвижных электроустановках с источником питания электроэнергией и приемниками электрической энергии, расположенными на общей металлической раме передвижного механизма, и не имеющих приемников электрической энергии вне этого механизма, допускается применять в качестве единственной защитной меры металлическую связь корпусов оборудования и нейтрали источника питания электроэнергией с металлической рамой передвижного механизма.

Расчет защитного заземления

Расчет заземляющих устройств сводится главным образом к расчету собственно заземлителя, так как заземляющие проводники в большинстве случаев принимаются по условиям механической прочности и стойкости к коррозии по ПТЭ и ПУЭ. Исключение составляют лишь установки с выносным заземляющим устройством. В этих случаях рассчитываются последовательно включаемые сопротивления соединительной линии и заземлителя, так, чтобы их суммарное сопротивление не превышало допустимого.

Таблица 1

Коэффициенты использования К и.г.зм горизонтальных соединительных электродов, в ряду из вертикальных электродов

Отношение расстояний между вертикальными электродами к их длине

Число вертикальных электродов в ряду

4

5

6

10

20

30

50

65

1

0,77

0,74

0,67

0,62

0,42

0,31

0,21

0,20

2

0,89

0,86

0,79

0,75

0,56

0,46

0,36

0,34

3

0,92

0,90

0,85

0,82

0,68

0,58

0,49

0,47

Таблица 2

Средние удельные сопротивления грунтов и вод, рекомендуемые для предварительных расчетов

Грунт

Удельное сопротивление , Ом*м

Грунт

Удельное сопротивление , Ом*м

Глина (слой 7-10 м, далее скала, гравий)

70

Скала

4000

Глина каменистая (слой 1-3 м, далее гравий)

100

Суглинок

100

Земля садовая

50

Супесь

300

Известняк

2000

Торф

20

Лёсс

250

Чернозем

30

Мергель

2000

Вода:

— грунтовая

— морская

— прудовая

— речная

50

3

50

100

Песок

500

Песок крупнозернистый с валунами

1000

Таблица 3

Значение повышающего коэффициента к для различных климатических зон

Данные, характеризующие климатические зоны и тип применяемых электродов

Климатические зоны

1

2

3

4

1. Климатические признаки зон :

Средняя многолетняя низшая температура (январь), С

от — 20

до — 15

от — 14

до — 10

от — 10

до 0

от 0

до + 5

Средняя многолетняя низшая температура (июль), С

от +16

до +18

от +18

до +22

от +22

до +24

от +24

до +26

Среднегодовое количество осадков, см

40

50

50

30-50

Продолжительность замерзания вод, дни

190-170

150

100

0

2. Значение коэффициента к :

При применении стержневых электродов длиной 2 — 3 м и при глубине заложения их вершины 0,5 — 0,8 м

1,8-2

1,5-1,8

1,4-1,6

1,2-1,4

При применении протяженных электродов и при глубине заложения 0,8 м

4,5-7,0

3,5-4,5

2,0-2,5

1,5-2,0

Таблица 4

Коэффициенты использования К и,г,зм вертикальных соединительных электродов в контуре из вертикальных электродов

Отношение расстояний между вертикальными электродами к их длине

Число вертикальных электродов в контуре

4

6

8

10

20

30

50

70

100

1

0,45

0,40

0,36

0,34

0,27

0,24

0,21

0,20

0,19

2

0,55

0,48

0,43

0,40

0,32

0,30

0,28

0,26

0,24

3

0,70

0,64

0,60

0,56

0,45

0,41

0,37

0,35

0,33

Требуется рассчитать контурный заземлитель подстанции 110/10 кВ со следующими данными: наибольший ток через заземление при замыканиях на землю на стороне 110 кВ — 3,2 кА, наибольший ток через заземление при замыканиях на землю на стороне 10 кВ — 42 А; грунт в месте сооружения подстанции — суглинок; климатическая зона 2; дополнительно в качестве заземления используется система тросы — опоры с сопротивление заземления 1,2Ом.

1. Для стороны 110 кВ требуется сопротивление заземления 0,5 Ом, Для стороны 10 кВ имеем:

= 3 Ом,

где расчетное напряжение на заземляющем устройстве U расч принято равным 125 В, так как заземляющее устройство используется также и для установок подстанции напряжением до 1000 В.

Таким образом, в качестве расчетного принимается сопротивление r зм = 0,5 Ом.

2.Сопротивление искусственного заземлителя рассчитывается с учетом использования системы тросы-опоры:

R и = 0,857 Ом.

3. Рекомендуемое для предварительных расчетов удельное сопротивление грунта в месте сооружения заземлителя (суглинка) составляет 1000 Ом·м. Повышающие коэффициенты к для горизонтальных протяженных электродов при глубине заложения 0,8м равны 4,5 и соответственно 1,8 для вертикальных стержневых электродов длиной 2 — 3м при глубине заложения их вершины 0,5-0,8м.

Расчетные удельные сопротивления: для горизонтальных электродов расч.г = 4,5х100 = 450 Ом·м; для вертикальных электродов с расч = 1,8х100 = 180 Ом·м.

4. Определяется сопротивление растеканию одного вертикального электрода — уголка № 50 длиной 2,5 м при погружении ниже уровня земли на 0,7 м:

где l =2,5, d=0,0475 м; t =0,7 + 2,5/2 = 1,95 м.

R в.о = .

5. Определяется примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования К и.г.зм = 0,6 :

= 111

6. Определяется сопротивление растеканию горизонтальных электродов (полосы 40х4 мм 2 ), приваренных к верхним концам уголков. Коэффициент использования соединительной полосы в контуре К и,г,зм при числе уголков примерно 100 и отношении a/l =2 равен 0,24.

Сопротивление растеканию полосы по периметру контура ( l = 500 м) равно:

= 8,57Ом.

7. Уточненное сопротивление вертикальных электродов:

= 0,952 Ом.

8. Уточненное число вертикальных электродов определяется при коэффициенте использования К и.г.зм = 0,52, при n = 100 и a/l = 2:

= 116.

Окончательно принимается 116 уголков. Дополнительно к контуру на территории устраивается сетка из продольных полос, расположенных на расстоянии 0,8-1 м от оборудования, с поперечными связями через каждые 6 м. Дополнительно для выравнивания потенциалов у входов и въездов, а также по краям контура прокладываются углубленные полосы. Эти неучтенные горизонтальные электроды уменьшают общее сопротивление заземления, проводимость их идет в запас надежности.

9. Проверяется термическая стойкость полосы 40 Ч 4 мм 2 .

Минимальное сечение полосы из условий термической стойкости равно:

= 45,5мм 2 .

Полоса 40 Ч 4 ммІ условию термической стойкости удовлетворяет. Трудно переоценить важность качественно выполненного заземления. Монтаж заземления — это обязательная процедура, без которой не может обеспечиваться безопасная эксплуатация любого здания, а также находящегося в нем оборудования. Кроме этого именно правильно выполненный контур заземления гарантирует безопасность для жизни людей, работающих на предприятии.

Таким образом, при замене старого оборудования на новые станки с ЧПУ необходимо провести замену старой проводки, уделив большое внимание заземлению предприятия.