Электроэнергетика — отрасль промышленности, занимающаяся производством электроэнергии на электростанциях и прередачей ее протребителям.
Энергетика является основой развития производственных сил в любом государстве. Энергетика обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики.
Энергетическая промышленность является частью топливно-энергетической промышленности и неразрывно связана с другой составляющей этого гигантского хозяйственного комплекса — топливной промышленностью.
Российская энергетика — это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Общая их мощность по состоянию на октябрь 1993 го года составляет 210 млн квт. В 1992 году они выработали около 1 триллиона кВт/ч электроэнергии и 790 млн. Гкал тепла. Продукция ТЭК составляет лишь около 10% ВПП страны, однако доля комплекса в экспорте составляет около 40%(в основном за счет экспорта энергоносителей).
В 1992 году экспортировано в страны Европы и Азии свыше 2% всей электроэнергии произведенной в стране. Общая длина линий электропередач составила 2.5 млн километров. Более 1.10 миллиона человек занято в электроэнергетике.
см. таблицу 1
Таблица 1.
1985 | 1990 | 1991 | 1992 | |
Производство электроэнергии (млрд КВч) | 963 | 1082 | 1074 | 1020 |
в том числе на ГЭС | 160 | 166 | 169 | 160 |
в том числе на АЭС | 99 | 118 | 120 | 117 |
Текущая задача российской электроэнергетики — правильное и целесообразное использование ресурсов уже имеющихся предприятий этой отрасли, что невозможно без эффективного сотрудничества с другими отраслями промышленности.
II. Основная часть
1. Типы и виды электростанций. Преимущества и недостатки.
¨ График 1. Потребление электроэнергии в России
|
Теплоэнергетика
Около 75% всей электроэнергии России производится на тепловых электростанциях. Большинство городов России снабаются именно ТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. Такая система является довольно-таки непрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях, эффективность централизованного теплоснабжения сильно при передаче также понижается. Подсчитано, что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов) установка электрического бойлера в дельно стоящем доме становится экономически выгодна.
Гидроэнергетика
ГЭС производят наиболее дешевую электроэнергию, но имеют доволен-таки большую себестоимость постройки. Именно ГЭС позволили советскому правительству в первые десятилетия советской власти совершить такой прорыв в промышленности.
Современные ГЭС позволяют производить до 7 Млн Квт энергии, что двое превышает показатели действующих в настоящее время ТЭС и АЭС, однако размещение ГЭС в европейской части России затруднено по причине дороговизны земли и невозможности затопления больших территорий в данном регионе. Построеные в западной и восточной сибири мощнейшие ГЭС несомненно нужны и это — важнейший ключ к развитию Западносибирского а также энергоснабжению Уралького экономических районов. Важным недостатком ГЭС является сезонность их работы, столь неудобная для промышленности.
Атомная энергетика.
Первая в мире АЭС — Обнинская была пущена в 1954 году в России. Персонал 9 российских АЭС составляет 40.6 тыс. человек или 4% от общего числа населения занятого в энергетике. 11.8% или 119.6 млрд. Квч. всей электроэнергии, произведенной в России выработано на АЭС. Только на АЭС рост производства электроэнергии сохранился : в 1993 году планируется произвести 118% от объема 1992 года.
Таблица 2.
АЭС | Номер блока | Тип реактора | Электрич. мощность | Год ввода в эксплуатцию | Срок вывода |
Белоярская |
1 2 3 |
АМБ АМБ БН-600 |
100 160 600 |
1963 1967 1980 |
1980 * 1989 * 2010 |
Билибинская |
1 2 3 4 |
ЭГП ЭГП ЭГП ЭГП |
12 12 12 12 |
1974 1974 1975 1976 |
2004 2004 2005 2006 |
Балаковская |
1 2 3 4 |
ВВЭР-1000 ВВЭР-1000 ВВЭР-1000 ВВЭР-1000 |
1000 1000 1000 1000 |
1985 1987 1988 1993 |
2015 2017 2019 2023 |
Калининская |
1 2 |
ВВЭР-1000 ВВЭР-1000 |
1000 1000 |
1984 1986 |
2014 2016 |
Кольская |
1 2 3 4 |
ВВЭР-440 ВВЭР-440 ВВЭР-440 ВВЭР-440 |
440 440 440 440 |
1973 1974 1981 1984 |
2003 2004 2011 2014 |
Курская |
1 2 3 4 |
РБМК-1000 РБМК-1000 РБМК-1000 РБМК-1000 |
1000 1000 1000 1000 |
1976 1978 1983 1985 |
2006 2008 2013 2015 |
Ленинградская |
1 2 3 4 |
РБМК-1000 РБМК-1000 РБМК-1000 РБМК-1000 |
1000 1000 1000 1000 |
1973 1975 1979 1981 |
2003 2005 2009 2011 |
Нововоронежская |
1 2 3 4 5 |
В-1 В-3 ВВЭР-440 ВВЭР-440 ВВЭР-1000 |
210 365 440 440 1000 |
1964 1969 1971 1972 1980 |
1984 * 1990 * 2001 2002 2010 |
Смоленская |
1 2 3 |
РБМК-1000 РБМК-1000 РБМК-1000 |
1000 1000 1000 |
1982 1985 1990 |
2012 2015 2020 |
АЭС, являющиеся наиболее современным видом электростанций имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они обсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде, новые энергоблоки имеют мощность практичеки равную мощности средней ГЭС, однако коэффициэнт использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС.
Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс-мажорных обстоятельствах:землетрясениях, ураганах, и т. п. — здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.
Другие виды электростанций.
Несмотря на то, что так называемые “нетрадиционные” виды электростанций занимают всего 0.07% в производстве электроэнергии в России развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Единственным представителем этого типа ЭС является Паужетская ГеоТЭС на Камчатке мощностью 11мвт. Станция эксплуатируется с 1964 года и устарела как морально так и физически. В настоящее время в стадии разработки находится технический проект ветроэнергетической электростанции мощностью в 1 Мвт. на базе ветрового генератора мощностью 16 Квт, выпускаемого НПО “ВетроЭн”. К 2000 году планируется пустить Мутновскую ГеоТЭС мощностью 200 Мвт.
Уровень технологических разработок России в этой области сильно отстает от мирового. В удаленных или труднодоступных районых России, где нет необходимости строить большую электростанцию, да и обслуживать ее зачастую некому, “нетрадиционные” источники электроэнергии — наилучшее решение.
2.
Энергосистема — группа электростанций разных типов и мощностей, объединенная линиями электропередач и управляемая из единого центра .
ЕЭС — единый объект управления, электростанции системы работают параллельно.
Объективной особенностью продукции электроэнергетики является невозможность ее складирования или накопления, поэтому основной задачей энергосистемы является наиболее рациональное использование продукции отрасли. Электрическая энергия, в отличие от других видов энергии, может быть конвертирована в любой другой вид энергии с наименьшими потерями, причем ее производство, транспортировка и последующая конвертация значительно выгоднее прямого производства необходимого вида энергии из энергоносителя. Отрасли, зачастую не использующие электроэнергию напрямую для своих технологических процессов являются крупнейшими потребителями электроэнергии.
ЭнеpгоОбъедиения |
Установленная мощность, млн. Квт. | Выpаботка электpоэнеpuии млpд. кВт. ч | ||
1990 | 1991 | 1990 | 1991 | |
ОЭС: | ||||
Центpа | 55.3 | 55.9 | 306.1 | 307.0 |
Сpедней Волги | 22.9 | 23.0 | 114.6 | 113.7 |
Уpала | 40.9 | 40.6 | 260.5 | 252.9 |
Севеpо-Запада | 33.0 | 33.0 | 167.8 | 162.9 |
Севеpного Кавказа | 10.6 | 10.6 | 58.7 | 57.0 |
Сибиpи | 44.3 | 44.6 | 198.4 | 198.3 |
Укpаины | 53.4 | 52.3 | 312.0 | 276.8 |
Закавказья | 12.3 | 12.9 | 63.0 | 62.1 |
Казахстана | 12.9 | 12.9 | 63.0 | 62.1 |
МолдЭнеpго | 3.0 | 3.0 | 13.0 | 13.2 |
Всего по ЕЭС | 288.6 | 288.2 | 1528 | 1489 |
¨ Таблица 3. Выработка электроэнергии по ЕЭС |
ЕЭС России — сложнейший автоматизированый комплекс электрических станций и сетей, объединенный общим режимом работы с единым центром диспетчерского управления (ДУ).
Основные сети ЕЭС России напряжением от 330 до 1150 кВ объединяют в параллельную работу 65 региональных энергосистем от западной границы до Байкала. Структура ЕЭС позволяет функционировать и осуществлять управление на 3 х уровнях: межрегиональном (ЦДУ в Москве), межобластном (объединенные диспетчерские управления) и областном (Местные ДУ).
Такая иерархическая структура в сочетании с противоаварийной интеллектуальной автоматикой и новейшими компьютерными системами позволяет быстро локализовать аварию без значительного ущерба для ЕЭС и зачастую даже для местных потребителей. Центральный диспетчерский пункт ЕЭС в Москве полностью контролирует и управляет работой всех станций, подключенных к нему.
Единая Энергосистема распределена по 7 часовым поясам и тем самым позволяет сглаживать пики нагрузки электросистемы за счет “перекачки” избыточной электроэнергии в другие районы, где ее недостает. Восточные регионы производят электроэнергии гораздо больше, чем потребляют сами. В центре же России наблюдается дефицит электроэнергии, который пока не удается покрыть засчет передачи энергии из Сибири на запад. К удобствам ЕЭС можно также отнести и возможность размещения элекростанции вдалеке от потребителя. Транспортировка электроэнергии обходиться во много раз дешевле, чем транспортировка газа, нефти или угля и при этом происходит мгновенно и не требует дополнительных транспортных затрат.
¨ График 2. Нагрузка электросети в течение суток
|
Если бы ЕЭС не существовало, то понадобилось бы 15 млн кВт дополнительных мощностей.
Российская энергосистема обоснованно считается одной из самых надежных в мире. За 35 лет эксплуатации системы в России в отличие от США(1965, 1977) и Канады (1989) не произошло ни одного глобального нарушения электроснабжения.
Несмотря на распад Единой Энергосистемы СССР большинство энергосистем ныне независимых республик все еще находятся под оперативным управлением ЦДУ РФ. Большинство независимых государств имеют отрицательное сальдо в торговом балансе электроэнергии с Россией. Так, по данным от 7.12.93 Казахстан должен России около 150 млрд. рублей, а Украина и Белорусия вместе — около 170 млрд., причем ни один должник в настоящее время не имеет финансовых возможностей выплатить России эти суммы.
3. Текущее положение в отрасли.
Энергоемкость ВПП.
Экологические аспекты развития электроэнергетики.
Вследствие спада производства потребности хозяйства страны в электроэнергии снизились и поскольку по прогнозам специалистов такая ситуация будет продолжаться еще как минимум 2-3 года и важно не допустить разрушения системы к моменту, когда потребности в электроэнергии снова станут возрастать. Для поддержания уже существующих электромощностей необходим ввод 8-9 млн кВт ежегодно, однако из-за проблем с финансированием и развалом хозяйственных связей из запланированных на 92 ой год 8 млн кВт построено и пущено мощностей лишь чуть более 1 млн кВт.
В настоящее время сложилась парадоксальная ситуация, когда в условиях спада производства наращивается его энергоемкость. По различным оценкам потенциал энергосбережения в России составляет от 400 до 600 млн. тонн условного топлива. А ведь, что составляет более трети всех потребляемых сегодня энергоресурсов.
¨ График 3. Сравнительная энергоемкость ВПП некоторых стран и регионов.
|
Эти резервы распределяются по всем этапам от производства, транспортировки, хранения до потребителя. Так, суммарные потери ТЭК составляют 150-170 млн тонн условного топлива. Очень велико потребление нефтепродуктов низкой перегонки в качестве топлива на электростанциях. При имеющем место дефиците моторного топлива такая политика крайне неоправданна. Принимая во внимание значительную разницу цен между мазутом и моторным топливом в качестве топлива для котлов теплостанций гораздо эффективнее использовать газ или уголь, однако при использовании последнего большое значение приобретают экологические факторы. Очевидно,что эти направления должны развиваться в равной степени, так как экономическая конъюнктура может существенно меняться даже в энергетике и однобокое развитие отрасли никак не может способствовать ее процветанию. Газ гораздо эффективнее использовать в качестве химического топлива(сейчас газа сжигается 50% от всего призводимого в стране), чем сжигать его на ТЭЦ.
Выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз. Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее неэкологичны угольные ТЭС, вблизи них радиационный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля: при сжигании 1 тонны условного топлива образуется 1.7 тонны СО 2 против 2.7 тонны при сжигании мазута или угля. Экологические параметры установленые ранее не обеспечивали полной экологической чистоты,в соответствии с ними строилось большинство электростанций. Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками по 800 Мвт и рукавными фильтрами улавливания пыли, проект ТЭЦ с парогазовыми установками мощностью по 300 Мвт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений.
4. Проблемы развития ядерной энергетики.
После катастрофы на Чернобыльской АЭС под влиянием общественности в России были существенно приторможены темпы развития атомной энергетики. Существовавшая ранее программа ускоренного достижения суммарной мощности АЭС в 100 млн кВт (США уже достигли этот показатель) была фактически законсервирована. Огромные прямые убытки повлекло закрытие всех строившихся в России АЭС, станции, признанные зарубежными экспертами как вполне надежные, были заморожены даже в стадии монтажа оборудования. Однако, последнее время положение начинает меняться: в июне 93 го года пущен 4ый энергоблок Балаковской АЭС, в ближайшие несколько лет планируется пуск еще нескольких атомных станций и дополнительных энергоблоков принципиально новой конструкции. Известно, что себестоимость атомной энергии значительно превышает себестоимость электроэнергии, полученной на тепловых или гидравлических станциях, однако использование энергии АЭС во многих конкретных случаях не только незаменимо, но и является экономически выгодным — в США АЭС за период с 58го года по настоящий момент АЭС принесли 60 млрд долларов чистой прибыли. Большое преимущество для развития атомной энергетики а России создают недавно принятые российско-американские соглашения о СНВ-1 и СНВ-2, по которым будут высвобождаться огромные количества оружейного плутония, невоенное использование которого возможно лишь на АЭС. Именно благодаря разоружению традиционно считавшаяся дорогой электроэнергия получаемая от АЭС может стать примерно в два раза дешевле электроэнергии ТЭС.
Российские и зарубежные ученые-ядерщики в один голос говорят, что для радиофобии, возникшей после чернобыльской аварии серьезных оснований научно-технического характера не существует. Как сообщила правительственная коммисия по проверке причин аварии на Чернобыльской АЭС, авария произошла вследствие грубейших нарушений порядка управления атомным реактором РБМК-1000 оператором и его помочниками, имевшими крайне низкую квалификацию. Большую роль в аварии сыграла и состоявшаяся незадолго до нее передача станции из Минсредмаша, накопившего к тому времени огромный опыт управления ядерными объектами в МинЭнерго, где такового совсем не было. К настоящему времени система безопасности реактора РБМК существенно улучшена : усовешенствованна защита активной зоны от пережога, ускорена система срабатывания аварийных сенсоров. Журнал Scientific American признал эти усовершенствования решающими для безопасности реактора. В проектах нового поколения атомных реакторов основное внимание уделяется надежному охлаждению активной зоны реактора. Последние несколько лет сбои в работе российских АЭС происходят редко и классифицируются как крайне незначительные.
Развитие атомной энергетики в России неотвратимо и это сейчас понимает большинство населения, да и сам отказ от ядерной энергетики потребовал бы колоссальных затрат. Так, если выключить сегодня все АЭС, потребуется дополнительно около 100 млн. тонн условного топлива, которое просто неоткуда взять.
Принципиально новое направление в развитии энергетики и возможной замене АЭС представляют исследования по безтопливным электрохимическим генераторам.
Потребляя натрий, содержащийся в морской воде в избытке этот генератор имеет КПД около 75%. Продуктом реакции здесь является хлор и кальцинированная сода, причем возможно последующее использование этих веществ в промышленности.
Восемь из девяти АЭС входят в концерн “РосЭенегроАтом”. Девятая — Ленингадская, вышла из концерна и эксплуатируется самостоятельно.
Средний коэффициент использованной мощности АЭС по стране составил 67%, однако на 6 реакторах он был выше 80%.
К 2000 году планируется увеличение производства электроэнергии на АЭС с сегодняшних 22 Гвт до 28 Гвт.
Таблица 4.
Наименование блока АЭС | Мощносїть МВт | 1993-1995 | 1996-2000 | 2001-2005 | 2006-2010 |
Завершаемые | |||||
Курская, 5 | 1000 | X | — | — | — |
Калининская, 3 | 1000 | Х | — | — | — |
Замещающие выводимые из эксплуатации | |||||
Билибинская, 5 | 32 | — | — | Х | — |
Билибинская, 6 | 32 | — | — | Х | — |
Билибинская, 7 | 32 | — | — | — | Х |
Нововоронежская, 6 | 1000 | — | — | Х | — |
Нововоронежская, 7 | 1000 | — | — | Х | — |
Кольская, 5 | 630 | — | — | Х | — |
Кольская, 6 | 630 | — | — | Х | — |
Кольская, 7 | 630 | — | — | — | Х |
Планируемые энергоблоки | |||||
Балаковская, 5 | 1000 | Х | — | — | — |
Балаковская, 6 | 1000 | Х | — | — | — |
Воронежская АСТ, 1 | 500 | — | Х | — | — |
Воронежская АСТ, 2 | 500 | — | Х | — | — |
Южно-Уральская, 1 | 800 | — | Х | — | — |
Южно-Уральская, 2 | 800 | — | — | Х | — |
Южно-Уральская, 3 | 800 | — | — | Х | — |
Белоярская, 4 | 800 | — | Х | — | — |
Планируемые АЭС и АСТ | |||||
Дальневосточная, 1 | 600 | — | — | Х | — |
Дальневосточная, 2 | 600 | — | — | — | Х |
Приморская, 1 | 600 | — | — | Х | — |
Приморская, 2 | 600 | — | — | — | Х |
Хабаровская АСТ, 1 | 500 | — | — | Х | — |
Хабаровская АСТ, 2 | 500 | — | — | Х | — |
Сосновый Бор, 1 | 630 | — | Х | — | — |
Хранение отработанного ядерного топлива | |||||
Смоленская ХОЯТ | — | Х | — | — | — |
5. Концепция энергетической политики России в новых экономических условиях.
Разработки коллективов отраслевых и академических институтов легли в основу Концепции энергетической политики России в новых экономических условиях. Концепция была представлена на рассмотрение в Правительство России рядом организаций — Минтопэнерго, Минэкономики, Миннауки России и Российской академей наук. Правительство Российской Федерации одобрило основные положения концепции на заседании правительства от 10.10.92 и после доработки проект документа был передан в Верховный Совет России.
Для реализации энергетической политики России в рамках комплексной энергетической программы было предложено несколько конкретных федеральных, межотраслевых и научно-технических программ. Среди основных программ предложены следующие :
Национальная программа энергосбережения., Национальная программа повышения качества энергоснабжения., Национальная программа по защите окружающей среды от вредных воздействий энергетики., Национальная программа поддержки обеспечивающих ТЭК отраслей., Газоэнергетическая программа “Ямал”., Программа освоения восточно-сибирской нефтегазовой провинции., Программа повышения безопасности и развития ядерной энгетики., Программа создания Канско-Ачинского угольно-энергетичекого комплекса, Программа альтернативного моторного топлива., Программа использования нетрадиционных возобновляемых источников энергии., Научно-техническая программа “Экологически чистая энергетика” на период 1993-2000 г.г.
III. Заключение. Выводы и предложения.
На сегодняшний день отрасль находится в кризисе. Основная часть производственных фондов отрасли устарела и нуждается в замене в течение ближайших 10-15 лет. На сегодняшний день вырабатывание мощностей втрое превышает ввод новых. Может создаться такая ситуация, что как только начнется рост производства возникнет катастрофическая нехвататка электроэнергии, производство которой невозможно будет нарастить еще по крайней мере в течение 4-6 лет.
Правительство пытается решить проблему с разных сторон : одновременно идет акционирование отрасли (51 процент акций остается у государства), привлечение иностранных инвестиций, начала внедряться подпрограмма по снижению энергоемкости производства.
В качестве основных задач развития российской энергетики можно выделить следующие :
1. Снижение энергоемкости производства.
2. Сохранение единой энергосистемы России.
3. Повышение коэффициэнта используемой мощности э/с.
4. Полный переход к рыночным отношениям, освобождение
цен на энергоносители, полный переход на мировые цены,
возможный отказ от клиринга.
5. Скорейшее обновление парка э/с.
6. Приведение экологических параметров э/с к уровню
мировых стандартов.
Для решения всех этих мер принята правительственная программа “Топливо и энергия”, представляющая собой сборник конкретных рекомендаций по эффективному управлению отраслью и ее переходу от планово-административной к рыночной системе инвестирования. Насколько эта программа будет выполняться покажет время.
¨ Список литературы.
[Электронный ресурс]//URL: https://drprom.ru/kursovaya/elektroenergetika-rossii/
“Деловой Мир”, газета |
#199, 11-17 окт. 1993 #193, 4 -11 окт. 1993 #182, 22 сент. 1993 #115, 22 июня 1993 |
“Business — МН”, газета |
#13, 28. 3. 1993 #44, 31.10.1993 |
“Коммерсантъ-Daily”,газета | #2 12.01.1993 |
Бюллетень центра общественной информации по атомной энергии |
#6, 1992 — стр. 5 — 14 #6, 1993 — стр. 3, стр23 #8, 1993 — стр. 3 |
Энергетика : цифры и факты | Москва, ЦНИИатоминформ |